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ABSTRACT 

Impervious surface has long been accepted as a key environmental indicator linking development to its 
impacts on water. Many have suggested that there is a direct correlation between degree of 
imperviousness and both quantity and quality of water. Quantifying the amount of impervious 
surface, however, remains difficult and tedious especially in urban areas. Lately more efforts have been 
focused on the application of remote sensing and GIS technologies in assessing the amount of 
impervious surface and many have reported promising results at various pixel levels. This paper 
discusses an attempt at estimating the amount of impervious surface at subdivision level using remote 
sensing images and GIS techniques. Using Landsat ETM+ images and GIS techniques,  a regression 
tree model is first developed for estimating pixel imperviousness. GIS zonal functions are then used to 
estimate the amount of impervious surface for a sample of subdivisions. The accuracy of the model is 
evaluated by comparing the model-predicted imperviousness to digitized imperviousness at the 
subdivision level. The paper then concludes with a discussion on the convenience and accuracy of 
using the method to estimate imperviousness for large areas. 
 
Keywords: impervious surface, imperviousness, regression tree method, remote sensing 

images, GIS 
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INTRODUCTION 
 This paper discusses the potential usage of remote sensing images for quantifying 
impervious surface area. Specifically, the paper investigates the accuracy of using moderate-
resolution Landsat ETM+ images in estimating impervious surface aggregated at 
subdivision level. The impervious surface is quantified using the regression tree model, a 
decision tree method that treats impervious coverage as a continuous entity and quantifies it 
at the subpixel level as a percentage of each 30m Landsat ETM+ pixel. Accuracy of 
imperviousness estimation using Landsat images at the pixel level has been tested by many 
researchers (see Smith, 2000; Ward et al., 2000; Wu & Murray, 2000; Yang et al., 2003) but no 
studies have yet tested this accuracy after aggregation at the subdivision level. Thus, this 
paper will investigate the potential of using Landsat ETM+ images for fast estimation of 
subdivision imperviousness by comparing the accuracy of the estimated imperviousness to 
that obtained through visual interpretation of 0.3m orthophotos. Due to its relatively high 
accuracy, imperviousness estimated through visual interpretation of a high-resolution aerial 
photo can be considered as the actual value of imperviousness in the field (Lee, 1987; 
Harvey, 1985; Kienegger, 1992). 
 Impervious surface is not a single homogeneous quantity but when used as a 
landscape indicator it is typically presented as a percentage of the land that is covered with 
impervious materials. Arnold & Gibbons (1996) defined impervious surfaces as any material 
covering the ground that prevents infiltration of water into the soil. While the prevalent 
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man-made materials such as paved surfaces (roads, parking lots, sidewalks, etc.) and 
building rooftops fall unambiguously under the definition of impervious surfaces, there are 
other surfaces, man-made and natural, that are so heavily compacted as to be functionally 
impervious. Examples of these are compacted soil in construction areas, dirt roads, bedrock 
outcrops and, even to a certain extent, grass turf in residential areas (Arnold & Gibbons, 
1996; Schueler, 1995). In this study, impervious surface was defined as any fixed man-made 
materials in a residential subdivision that has the potential to prevent infiltration of water 
into the soil. The materials may be used for functions that are related to dwelling such as 
rooftops and patios or transportation such as roads, parking and sidewalks or recreation 
such tennis court and swimming pool or infrastructures such as water tank, etc. 
Imperviousness, meanwhile, was defined as the extent of coverage by impervious surfaces 
in an area, regularly reported in percentage of the total area. As an environmental indicator, 
imperviousness has the advantage of being able to be measured at all scales of development.  
 
REMOTE SENSING AND IMPERVIOUS SURFACE 
 Development of the scientific basis for the relationship between land use and 
impervious surface began in the field of urban hydrology primarily during the 1970s (Brabec 
et al., 2002). Imperviousness in the early research was evaluated in four ways: 1) identifying 
impervious areas on aerial photography and then measuring them using a planimeter (e.g. 
Stafford et al., 1974; Graham et al., 1974); 2) overlaying a grid on an aerial photograph and 
counting the number of intersections that overlaid a variety of land uses or impervious 
features (e.g. Gluck & McCuen, 1975; Hammer, 1972; Ragan & Jackson, 1975); 3) supervised 
classification of remotely sensed images (e.g. Ragan and Jackson, 1975); and 4) equating the 
percentage of urbanization with the percentage of imperviousness (e.g. Morisawa & LaFlure, 
1979). A number of studies also showed a significant correlation between total 
imperviousness and a number of demographic variables such as population density, 
number of households, employment, etc. (see Stankowski, 1972, Graham et al., 1974, Gluck & 
McCuen, 1975) but the relationship was site specific and some of the variables were not 
appropriate for all urban areas. 
 Early impervious surface mapping efforts using remotely sensed data were mainly 
conducted through visual interpretation of aerial photography. Manual identification of 
landscape features by aerial photograph interpretation and classification is time consuming 
and prohibitively expensive when performed over a large area. In addition, available aerial 
photographs are collected at differing scales and on different dates, thus requiring time-
consuming rectification, digitization, and interpretation. With the launch of the Landsat 
Multispectral Sensor in 1972, digital satellite imagery began providing a synoptic view of the 
Earth’s surface capable of producing regular, repeatable land cover maps. Significant 
reductions in the amount of labor necessary for impervious surface delineation came with 
computer-automated spectral analysis of satellite data. These methods were capable of 
obtaining results comparable to aerial photo interpretation in considerably less time and 
with a significant reduction in cost (Ragan & Jackson, 1975). 

In contrast to aerial photographs, a single satellite image covers a large geographic 
area, providing consistent results throughout the area, and the classified digital image is 
readily compatible with GIS. Once a procedure for classifying land-cover types is 
established, additional images can be classified in a fraction of the time it would take for 
manual interpretation. Another advantage of satellite imagery over aerial photographs is 
that satellite sensors have spectral bands that match the spectral reflectance properties of 
certain land covers. The Landsat TM (Thematic Mapper) sensor, for example, has six 
reflective bands whereas color and color-infrared aerial photography is limited to three 
spectral bands, and black and white photographs have only one band. There are, however, 
some limitations to satellite imagery. One major limitation is the relatively large pixel size 
(unit of resolution) of the images. Landsat TM images, for instance, have a pixel size of 30m 
x 30m, which is large enough such that individual pixels in urban areas typically encompass 
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a diversity of land-cover conditions of differing imperviousness. In contrast, aerial 
photographs generally have much finer resolution (inches to a few feet), enabling the image 
analyst to distinguish one land cover from another. There are, however, satellite imagery 
with finer resolution such as IKONOS imagery (4m x 4m for multispectral image, 1m x 1m 
for panchromatic image) but the costs are rather prohibitive for a large study area that 
requires multiple scenes. 

Many of the earlier methods using spectral information from satellite sensors are 
based on supervised and unsupervised classification techniques and other forms of spectral 
clustering, thresholding, and modeling. Products are often presented as maps portraying the 
presence or absence of impervious features at the single pixel scale. Other estimates of 
impervious cover, meanwhile, rely on lookup tables (conversion factors) derived from 
surrogate measures of parcel size (Monday et al., 1994; Sleavin et al., 2000) and land use and 
land cover information (Deguchi & Sugio, 1994; Williams & Norton, 2000; Ward et al., 2000). 
Forster (1985), however, warned against classifying MSS and TM pixels found in the urban 
settings as one specific land cover class due to a mismatch in resolutions; the sensor 
resolution being too coarse compared to the fine spatial resolution of features in the urban 
environment.  

Potential solutions to this problem have been introduced in more recent studies that 
adopted advanced machine learning algorithms and spectral mixture analysis that allow the 
derivation of imperviousness at the subpixel level. Flanagan & Civco (2001), for example, 
conducted a subpixel impervious surface mapping for four municipalities in Connecticut, 
USA using artificial neural network and an ERDAS Imagine® subpixel classifier. The overall 
accuracy at the binary impervious-non-impervious detection level varied from 71 to 94% 
with a root mean square error (RMSE) of 0.66 to 5.97. Spectral mixture modeling is another 
method that can be used to estimate subpixel land cover information. Ji and Jenson (1999), 
Wu and Murray (2002), Ward et al. (2000), and Rashed et al. (2003) have used this method to 
derive information about the amount of impervious cover in a single pixel. Wu and Murray 
reported an overall estimation RMSE of 10.6 percent imperviousness. 

 In another approach, modeling techniques using decision tree models have been 
successfully implemented in subpixel quantification of impervious surface. A decision tree 
model dealing with discrete data is known as a classification tree model and that dealing 
with continuous data is referred to as a regression tree model.  Smith (2000), for instance, 
used classification tree for Montgomery County, Maryland, USA with the overall within-
class accuracy of about 84%. Yang et al. (2003) went a step further by using regression tree, 
thus modeling the impervious surface output as a continuous rather than discrete variable. 
In order to check the applicability of their model at different spatial scales, Yang et al. 
conducted their study on three different spatial scales, i.e. a local scale of ~1000 km2, a 
subregional scale of ~10000 km2), and a regional scale of 100000 km2. Regardless of change in 
spatial scale, it was found that the technique was capable of predicting imperviousness with 
consistent and acceptable accuracy. For all three areas tested, the correlation coefficient 
between the predicted and actual imperviousness ranged from 0.82 to 0.91, and the average 
error varied from 8.8 to 11.4 percent imperviousness.  

Regardless of the method used for quantification of impervious surface (spectral 
mixture analysis, artificial neural networks or machine learning algorithms), the subpixel 
processing techniques have proven effective at increasing classification accuracy of 
impervious surface (Slonecker et al., 2001).  Civco & Hurd (1997) also concluded that the 
information derived about impervious surfaces from subpixel classification methods was 
superior to traditional land use/land cover based method.  

 
STUDY AREA 

For the purpose of this study, Wake County in the State of North Carolina, USA was 
selected as the study area (Figure 1). The area was selected because of data availability and 
logistical convenience for the author at the time of the study. With a land mass of 860 square 
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miles, the county housed an estimated population of 627,846 in 2000 which was projected to 
be 678,651 persons in 2002 (U.S. Census Bureau, 2000). Wake County measures about 46 
miles from east to west and 39 miles north to south. Based on the 1998 land use distribution 
data from North Carolina’s Center for Geographic Information and Analysis (Figure 1 and 
Table 1), urbanized area covers about 7.3% of the county with majority of it in the 
municipalities of Raleigh and Cary. Forest cover in the form of evergreen, deciduous, and 
mixed forests as well as woody wetlands makes up the largest percentage of the land use at 
71% of the total area. Agricultural land in the form of crop agriculture and pasture places in 
second with 18.7% of the area. 

 
Table 1: Distribution of land use in Wake County 
 
Land Use/Land Cover Area (acres) Area (%) 

High Intensity Developed 
Low Intensity Developed 
Crop agriculture 
Managed Herbaceous 
Unmanaged Herbaceous 
Evergreen Forest 
Mixed Forest 
Deciduous Forest 
Woody wetland 
Herbaceous Wetland 
Sands 
Water 

21,903 
17,941 
73,097 
29,437 

65 
212,340 

90,470 
2,955 

84,332 
16 

861 
15,814 

4.0% 
3.3% 

13.3% 
5.4% 

0.01% 
38.7% 
16.5% 

0.5% 
15.4% 

0.003% 
0.2% 
2.9% 

TOTAL 549,231 100.0% 
  

 
 
 
 
 
 
METHODS AND PROCEDURES 
 
Data Acquisition 

Estimation of imperviousness using remote sensing images was carried out using  
two forms of remote sensing imagery and a planimetric data of a small section of the study 
area. The first type of the remote sensing imagery was scenes from Path 15/Row 35 and Path 
16/Row 35 of the Landsat ETM+ images captured by Landsat 7 satellite. The images that 
were captured on 25 April 2002 had already been orthorectified and projected to UTM Zone 
17 coordinate system with a NAD83 datum (Figure 2). Orthorectified images are images that 
have been corrected from distortion due to sensor tilt and terrain-induced distortion. 

The second type of remote sensing imagery acquired was the 0.3m rectified 
orthophotos from the USGS Earth Resources Observation System Data Center. The 0.3m 
orthophotos of the study area are part of the Raleigh-Durham High Resolution Color 
Orthoimagery taken on 28 March 2002. The orthophotos have been orthorectified and 
projected to UTM Zone 17 coordinate system with a NAD83 datum (Figure 3). The high 
resolution of the orthophotos made it possible to visually compare between pervious and 
impervious materials as well as between different types of impervious materials. For that 
reason, the orthophotos were utilized to update the planimetric data used in establishing the 
training and validation data set for impervious surface. To avoid potential errors due to 
temporal difference in image dates, it is best that all the images are of the same date or at 
least close enough for assumption of no changes in land use/land cover properties. As it 
turned out, the acquisition dates of the orthophotos and the Landsat ETM+ images are close 
enough for the assumption, i.e. approximately one month difference. 

 
 

 

Figure 1: Study area showing land use disribution
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Digital planimetric data for a small urbanized section of the county, i.e. the City of 
Raleigh, was acquired and utilized as the main source of training and validation data sets for 
impervious surface in building the regression tree model. The data were obtained from the 
City of Raleigh’s GIS Department and its coverage was limited to only the City of Raleigh. It 
is important to note here that although the planimetric data contained rich information in 
vector format delineating as-built boundaries of building footprints, parking lots, roads, 
footpaths and other structures, its use for determining the amount of impervious surface 
was limited by its spatial availability. In this case, the planimetric data covers only about ten 
percents of the study area. On top of that, the currency of the planimetric data was lacking, 
requiring updating of information using the latest high-resolution aerial photos. With its 
information updated using the 0.3m orthophotos, the planimetric data provided an accurate 
and current training and validation data sets for impervious surface.  

Direct estimation of imperviousness at subdivision level using aerial photos required 
usage of GIS spatial data in addition to the 0.3m orthophotos described above. The GIS data 
layers include: 1) a subdivision map for identification and random selection of subdivision 
samples, where a total of 115 samples out of the available 3280 subdivisions were selected 
(Figure 4); 2) planimetric data, used in conjunction with the orthophotos, to expedite 
digitizing of impervious surface in subdivisions for which the planimetric data was 
available (i.e. within the City of Raleigh); and 3) a digital road network to expedite 
calculation of impervious surface originating from streets. All of the data used in this part 
are digital spatial data in ArcView shapefiles either downloaded from the Wake County GIS 
website or obtained directly from the municipalities in digital format via digital discs for the 
data not available online. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Remote Sensing Image Pre-Processing  
Before they could be used, the remote sensing images must go through a few steps of 

preprocessing. The original 28.5m ETM+ images were co-registered to the 0.3m orthophotos 
to within 0.5 pixel root mean squared error (RMSE) before being resampled to 30m pixels 

Figure 2: Landsat ETM+ images 

 

Figure 3: 0.3m orthophoto 

Figure 4: Locations of sampled subdivisions 

ConventionalSubdivision
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using the nearest neighbor resampling method. The 0.3m orthophotos themselves were 
beforehand co-registered to the planimetric data. Co-registration is a process of superposing 
two or more images guided by ground control points so that equivalent geographic points 
coincide. Accurate co-registration between the images is important since even a slight mis-
registration could result in potentially large differences between actual and predicted values 
of imperviousness. All of these steps were done using the ERDAS Imagine 8.6 software. 

Using the GIS software ArcView® 3.2 equipped with its spatial and image analysis 
extensions (Spatial Analyst and Image Analyst),  the digital numbers (DN) of all six 
reflective bands of the Landsat ETM+ images (Bands 1-5,7) were then converted to at-
satellite reflectance values as described by Landsat Project Science Office (2002). Then the 
Normalized Difference Vegetation Index (NDVI) values for the images were calculated, 
followed by the Tasseled-cap values of brightness, greenness and wetness, using at-satellite 
reflectance-based coefficients described by Huang et al. (2002). The ratio of Band 5:1 was also 
added as a possible soil moisture indicator helpful in discriminating between concrete and 
exposed soil. To summarize, the final layers that would be used as independent variable 
inputs were grid layers of at-satellite reflectance of ETM+ visible bands, NDVI values, 
Tasseled-cap values and Band 5:1 ratio (Table 2). 

 
Table 2: Independent variables for regression tree method 
Independent Variable Source Format 
Band 1 
Band 2 
Band 3 
Band 4 
Band 5 
Band 7 
NDVI 
Tasseled-cap Brightness 
Tasseled-cap Greenness 
Tasseled-cap Wetness 
Band 5: Band 1 Ratio 

Landsat ETM+ 
Landsat ETM+ 
Landsat ETM+ 
Landsat ETM+ 
Landsat ETM+ 
Landsat ETM+ 
Landsat ETM+ (calculated) 
Landsat ETM+ (calculated) 
Landsat ETM+ (calculated) 
Landsat ETM+ (calculated) 
Landsat ETM+ (calculated) 

30m raster grid 
30m raster grid 
30m raster grid 
30m raster grid 
30m raster grid 
30m raster grid 
30m raster grid 
30m raster grid 
30m raster grid 
30m raster grid 
30m raster grid 

 
Training and Validation Data 

Building the regression tree model to estimate imperviousness per Landsat ETM+ 
pixel required substantial training data and testing its accuracy at the pixel level required 
validation data. These training and validation data of impervious surface were the 
dependent variable of the regression tree model. The main source of the data was the 
planimetric data from the City of Raleigh, updated and verified using the 0.3m orthophotos. 
While the orthophotos alone were good enough for this purpose, it would however take a 
long time to digitize the required training and validation data. Since the planimetric data 
were available in hand, they acted as the primary source of data while the orthophotos were 
used for verification and updating. All coverages of the impervious surfaces from the 
planimetric data (buildings, roads, parking, utilities, etc) were merged into one vector 
dataset and reprojected from North Carolina State Plane Coordinates NAD83 into UTM 
Zone 17 coordinates in ArcView. 

Four 1800m x 1800m windows of the planimetric data were visually selected to cover 
spectral variations of impervious surfaces and degree of urbanization that best represent the 
study area. Each of the four 1800m x 1800m windows was then divided into nine equal-sized 
blocks of 600m x 600m where six of which were randomly selected for use as training blocks 
and the remaining three as validation blocks. Campbell (1981) and Friedl et al. (2000) 
suggested that using randomly selected pixel blocks rather than individual pixels as test 
data should reduce possible bias in model accuracy assessment due to spatial 
autocorrelation between training and test data. The updated planimetric data for training 
and validation were then rasterized into 0.3m pixel in ArcView and reclassified into binary 
categories of impervious and pervious. Zonal summary of the 0.3m pixels of the impervious 
category according to each 30m pixel of the training and validation areas were then carried 
out using the Spatial Analyst function of ArcView 3.2. 
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Regression Tree Analysis 
Collection of the values for the independent and dependent variables was first 

carried out before starting the regression tree analysis. The task was carried out in ArcView 
with the help of an Avenue Extension called StatMod developed by Garrard of Utah State 
University (Garrard, 2002). StatMod was used to collect the grid values of both the 
independent and dependent variables from their respective grid layers. The independent 
variables were those listed in Table 2 and the dependent variable was the percentage of 
impervious surface within each 30m pixel of the four 1800m x 1800m training and validation 
areas explained in the previous section. A total of 9600 data points (grid values) per variable 
were collected for use as training data and 4800 data points per variable as validation data. 
The data were then exported from ArcView into S-PLUS®, a statistical software, for 
regression tree analysis. In S-PLUS, a maximal regression tree was first developed using the 
values of the dependent variables from the training area and the relevant values of all the 
independent variables (Figure 5). Then, pruning of the maximal tree was carried out to 
produce a series of simpler trees, each of which a candidate for the optimal tree. In order to 
select an optimal tree, the quality of each candidate tree was based on its mean absolute 
error of prediction (using the validation data). In addition to mean absolute error, 
correlation coefficient was also calculated for each candidate tree. Since several trees were 
close in their qualities, the tree that used the least number of independent variables, a 
parsimonious model, was selected. A parsimonious tree model was desirable since it 
required less data volume as well as computing time. For further reading on the regression 
tree method, readers are encouraged to refer to Breiman et al. (1984).  

The selected regression tree model or the optimal model was then used to estimate 
the imperviousness percentage of all pixels in the Landsat ETM+ image covering the study 
area. This was also done in S-PLUS by providing the regression tree model with the pixel 
values of the relevant independent variables for all pixels within the study area. The 
resulting imperviousness of each pixel was then exported back into ArcView for visual 
display. The whole process consumed a lot of computing time and resources since it 
involved more than 4.3 million pixel values per variable (30m pixel) for a study area of this 
size, i.e. 860 square miles. This is one reason why a parsimonious model was preferred. In 
ArcView, the pixel imperviousness percentage was also aggregated at several levels for 
further analysis. The levels were 2x2 pixel windows (60m x 60m grid), 3x3 pixel windows 
(90m x 90m grid) and, of course, at subdivision level for the selected subdivisions. 

   
Digitizing Impervious Surface of Subdivisions 

Quantification of impervious surface at the subdivision level for later comparison 
with the product of remote sensing images (the regression tree method) was done using the 
manual on-screen (or head-up) digitizing of the 0.3m orthophotos integrated in GIS with the 
vector data of subdivision boundaries. This method has been successfully carried out and 
described by various people among whom are Lee (1987), Harvey (1985) and Kienegger 
(1992). The procedure began with overlaying of the subdivision digital map on the geo-
referenced 0.3m orthophotos in ArcView with all of the files projected in a common 
projection of Zone 17 of the Universal Transverse Mercator (UTM), North American Datum 
(NAD) 1983. From there, impervious surfaces as schematically shown in Figure 6 below 
were digitized from the orthophotos. The process entailed tracing each identifiable feature’s 
impervious footprint from the orthophotos and summing its total amount according to 
subdivision. Imperviousness value of each subdivision was then calculated which was the 
percentage of the total subdivision area covered with impervious surface. 

In digitizing impervious surface within a subdivision, all area of pavement, 
sidewalks and nonresidential-lot impervious surface were digitized whereas only samples of 
driveways and rooftops were digitized. Stratified random sampling was carried out in 
sampling of lots within a subdivision. This involved separation of lots into two groups, lots 
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served by cul-de-sacs and lots served by through streets before random samples from each 
group were taken, proportionate to each group’s share of the total lots. Once the lot samples 
were selected, impervious surfaces from rooftops, lot driveways and r.o.w driveways 
adjacent to the selected lots were then digitized. Undeveloped lots were excluded from 

Figure 6: Components of impervious surface in residential subdivisions 

Lot (Residential Lot) 

r.o.w  (Streets Right-of-Way) 

Rooftop 
Lot Driveway 

Pavement r.o.w Driveway 
Sidewalk 

  

 

      

a) Maximal Regression Tree 

B1 < 114 

B1 < 223

B1 < 147

WET < 0.57 

WET < 23.67

NDVI < -0.28 

NDVI < -0.21

B1 < 233 

GREEN < -B4 < 106 

NDVI < -0.26 

B7 < 135 B7 < 143 B7 < 195

B1 < 248 

GREEN < -32.9 B4 < 122

NDVI < -0.26 B1 < 192

23.8535.9054.1537.30

98.5585.10 

40.90 71.30 

90.60 

82.93 

78.50 

98.13 

97.40

78.1057.70

NDVI < -0.09 

Yes No 

Yes

Yes

Yes

No

No 

No 

No No 

No 

No

No 

No

No

No

Yes

Yes

Yes 

Yes 

Yes 

Yes

Yes 

Yes 

No

No

NoNo 

No

No

No

Yes

YesYes

Yes

Yes 

Yes 

No 

Yes Yes

b) Portion of the regression tree

NDVI < - Root Node 

NDVI < - Internal Nodes (splits) 

78.10 Terminal Nodes 
(Imperviousness percentage)

NDVI         Normalized Difference Vegetation Index

NOTE:

WET           Tasseled-cap wetness 

GREEN       Tasseled-cap greenness 

B1,B4,B7     Band 1, Band 4, Band 7 

Tree shown before pruning 

Figure 5: Maximal regression tree without the variables (a) and details of a portion of the tree generated using 
S-PLUS (b). 
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sample selection and assumed in this study to have the average amount of imperviousness 
of other lots with similar lot size and location. Altogether there were 13828 residential lots in 
all 115 subdivisions and a total of 3107 lots were sampled for digitizing of impervious 
surfaces. The total samples thus represent approximately twenty two percents of the total 
lots. The percentage of samples however differs from subdivision to subdivision depending 
on homogeneity of lot size within the subdivisions. The range of sample percentages was 
from five percent for subdivisions with homogeneous lots to as high as thirty percent for 
subdivisions with variable lot sizes.  
 
RESULTS AND DISCUSSIONS 
 
Selecting the optimal model 

Table 3 lists accuracy estimates for some promising model options based on different 
combinations of independent variables. The mean absolute errors for the models range from 
7.8 to 8.4% with the correlation coefficients range very closely from 0.69 to 0.71. These results 
are close to those reported by Yang et al. (2003) when they used the same model to estimate 
impervious surface. They reported mean absolute errors of 9.2 to 11.4% and slightly higher 
correlation coefficients of 0.82 to 0.89.  

 
 
 

 
 
 

The small differences in accuracy estimates among the models encouraged adoption 
of a simpler and parsimonious model requiring the least number of independent variables. 
The relative importance of the independent variables was assessed based on the position of 
each variable within the rule-sets (the tree) of the model. Within the rule-sets, independent 
variables are ordered in decreasing relevance to the dependent variable with the most 
important independent variable positioned at the top of the tree. Figure 8b shows portion of 
the maximal regression tree generated in S-PLUS showing the relative importance of each 
independent variable in the tree. Inspection of the rule-sets of the models revealed that the 
most important variables in descending order were NDVI, wetness, B1, B7 and B4.  The 
insignificance of the other variables excluded from the models was not surprising since there 
were high correlations among the variables as indicated in Table 4. The selected regression 
tree model was therefore the one developed using only NDVI, wetness, B1, B4 and B7 
(Model 4 in Table 3).  

 
 
 
 
 
 
 
 
 
Pixel-to-Pixel Accuracy 

Validation of pixel imperviousness estimated by regression tree models using 
Landsat ETM+ images was poor on a pixel-by-pixel basis due to the geometric registration 
errors between the Landsat images and the orthophotos. Figure 7a shows the plot of 
predicted versus actual imperviousness on pixel-by-pixel basis. In general, image-to-image 
registration can rarely be less than half a pixel off in both horizontal and vertical directions. 
When comparing the subpixel impervious surface from these two sources on a pixel-by-

Table 4: Correlations among independent variables 

 
Table 3: Performance of selected models using different combinations of predictive variables 
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pixel basis, there is less than a quarter of a pixel overlap. This small overlap is the reason 
why a small mismatch in the registration can lead to large errors in accuracy assessment 
(Dai and Khorram, 1998).  

The impacts of mis-registration on validation, however, can be reduced when 
working on aggregated window basis. Two window sizes were therefore chosen in this 
study, i.e. 2 pixels by 2 pixels or 2x2 window (60m pixel) and 3 pixels by 3 pixels or 3x3 
window (90m pixel). Figures 7b-c show the plots of predicted versus actual imperviousness 
after aggregation at 2x2 and 3x3 window sizes. The impact of mis-registration decreases as 
window size increases, leading to better agreement between the modeled and the actual 
impervious surface fractions.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Accuracy through visual inspection 
Another way to assess the accuracy of the selected model is through visual 

inspection of predicted imperviousness over the entire study are. Application of the selected 
regression tree model over the entire study area produced reasonable spatial pattern of 
impervious surface with some weaknesses that could be overcome to a certain degree. The 
most obvious weakness was the confusion in interpreting water bodies as impervious 
surface but this weakness was overcome in this study by implementing water mask to the 
study area. Water mask can be easily extracted from classification of the remote sensing 
images. The second and more difficult weakness was the spectral confusion between bare 
soils (especially from fallow fields) and man-made impervious surface that was believed to 
have resulted in overprediction of low imperviousness as shown in Figure 10. This is 
however more a weakness of the remote sensing images than the model itself. In this study, 
this weakness was partly overcome by including a farm mask extracted from the parcel map 
and assigning zero as the imperviousness value of the area. For urban area, however, there 
is no available data for such mask and it may or may not be reasonable to anticipate that the 
extent of bare soils in urban area is relatively minimal. This will be confirmed, at least in this 
study, when the comparison between predicted and actual imperviousness is done at 
subdivision level next. 

Figure 8 shows the results of applying the final model over the entire study area with 
the water and farm masks discussed above incorporated. Visual inspection of the outputs 
indicates reasonable representation of the pattern of impervious surface within the study 
area. Major urban centers, the airport, shopping malls and even major transportation routes 
are well represented with very high imperviousness. High density residential areas within 
two major municipalities in the study area, Cary and Raleigh, are well differentiated from 
areas of low residential density surrounding them. These results are good enough for 
analysis at this level, i.e. a regional level. 

 

(a)  

Figure 7: Predicted versus actual imperviousness per pixel for a) 30m pixels, b) 60m pixels (2x2 windows) c) 90m 
pixels (3x3 window) 

(b) (c) 
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Figure 8: Model-predicted imperviousness of the study area 

 
Accuracy at subdivision level 
The accuracy of model prediction at the pixel level is important from a scientific perspective 
and as shown earlier even a slight mis-registration between images could result in large 
errors. From the management perspective, however, the assessment of imperviousness is 
more meaningful if done on a landscape management unit such as a watershed or a 
subdivision.  Therefore, the pixel-based imperviousness predicted by the selected regression 
tree were summarized at subdivision level for the selected 115 subdivisions and compared 
to the digitized values obtained from the visual interpretation of the 0.3 orthophotos. 
Summarization of the pixel-based predicted imperviousness was carried out in ArcView 
only after the water and farm masks had been applied. This liminated the possibility of 
misinterpreting water bodies and fallow fields for impervious surface, but the potential of 
misinterpreting bare soils in non-farm land, however, was still present.  Figure 9 shows the 
plot of model-predicted imperviousness versus digitized imperviousness at subdivision 
level. The results were encouraging with the mean absolute error decreased to only 4.8% and 
the correlation coefficient increased to 0.9. There was however still a tendency for the model 
to overpredict imperviousness at low values. This can be attributed to confusion in Landsat 
images between bare soils and impervious surface. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

CONCLUSIONS 
The study was about application of remote sensing technology in urban planning 

works. The objective here was investigate the accuracy of using medium-resolution Landsat 
ETM+ images in estimating impervious surface aggregated at subdivision level. Images 
from Landsat ETM+ were used together with GIS-ready planimetric data updated with high 
resolution orthophotos for developing a regression tree model to predict imperviousness 

Figure 9: Model-predicted imperviousness versus 
digitized imperviousness at subdivision level 
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percentage of each Landsat pixel. Zonal summary of the imperviousness percentage of 
relevant pixels would give percentage of impervious surface within any spatial zone such as 
subdivisions, city or even county. It was found that there were several limitations of the 
model, some of which could be overcome as discussed earlier. However, certain weaknesses 
seemed to be inherent of the model or the procedures involved in developing the model. 
One such weakness was the difficulty in co-registering the images used in the model which 
affected the accuracy of pixel-to-pixel model validation. Nevertheless, this difficulty was 
overcome by validating the results on aggregated window basis and the resulting prediction 
error of about 8% was comparable to those reported in past studies.  

More useful from management perspective, however, was aggregation of the 
predicted imperviousness at subdivision level which resulted in higher accuracy when 
compared to the digitized values. The mean absolute error reported was about 5% but there 
was still a tendency for the model to overpredict imperviousness at low values due to 
confusion with bare soils. Although the mean absolute error of 5% is encouraging, the 
tendency to overestimate low imperviousness can generate biased results. Overall the model 
has a potential for a quick and synoptic estimate of imperviousness in large areas provided 
that the areas have no or little bare soil or a procedure is available to eliminate bare soil 
interference in the model’s prediction. 

Finally, even though the setting of the study was somewhat different from what we 
have here in Malaysia, the author believe that the principles and the techniques behind the 
study are still relevant if the study were to be applied here. The convenience of using remote 
sensing images for impervious surface estimation would still be applicable and should 
therefore be taken advantage of. Cautions, however, should be exercised when matching the 
objectives of the study to the resolution of the remote sensing images used and the issue of 
spectral confusion between impervious surface and bare soils or other similar natural 
features still need to be resolved/duly noted.  
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