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ABSTRACT

Speech recognition has many applications in various fields. One of the most
important phase in speech recognition is feature extraction. In feature extraction
relevant important information from the speech signal are extracted. However, two
important issues that affect feature extraction are noise robustness and high feature
dimension. Existing feature extraction which uses fixed windows processing and
spectral analysis methods like Mel-Frequency Cepstral Coefficient (MFCC) could not
cater robustness and high feature dimension problems. This research proposes the
usage of Discrete Wavelet Transform (DWT) to replace Discrete Fourier Transform
(DFT) for calculating the cepstrum coefficients to produce a newly proposed Wavelet
Cepstral Coefficient Wavelet Cepstral Coefficient (WCC). The DWT is used in order
to gain the advantages of the wavelet in analyzing non stationary signals. The WCC
is computed in a frame by frame manner. Each speech frame is decomposed using the
DWT and the log energy of its coefficients is taken. The final stage of the WCC
computation is done by taking the Discrete Cosine Transform (DCT) of these log
energies to form the WCC. The WCC are then fed into a Neural Network (NN)
for classification. In order to test the proposed WCC a series of experiments were
conducted on TI-ALPHA dataset to compare its performance with the MFCC. The
experiments were conducted under several noise levels using Additive White Gaussian
Noise (AWGN) and number of coefficients for speaker dependent and independent
tasks. From the results, it is shown that the WCC has the advantage of withstanding
noisy conditions better than MFCC especially under small number of features for both
speaker dependent and independent tasks. The best result tested under noisy condition
of 25 dB shows that 30 WCC coefficients using Daubechies 12 achieved 71.79%
recognition rate in comparison to only 37.62% using MFCC under the same constraint.
The main contribution of this research is the development of the WCC features which
performs better than the MFCC under noisy signals and reduced number of feature
coefficients.
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ABSTRAK

Pengecaman suara mempunyai pelbagai aplikasi dalam berbagai bidang. Salah
satu fasa yang terpenting bagi pengecaman suara ialah penyarian ciri. Pada fasa
penyarian ciri informasi penting pada isyarat bunyi disari. Walaubagaimanapun,
dua isu penting yang mempengaruhi penyarian ciri adalah keteguhan pada hingar
dan jumlah ciri yang besar. Teknik-teknik penyarian ciri yang sedia ada
seperti Pekali Cepstral Frekuensi Mel (MFCC) memproses isyarat suara dengan
menggunakan bingkai bersaiz tetap dan menggunakan analisis spektral tidak
mampu menanggani masalah keteguhan pada hingar dan jumlah ciri yang besar.
Kajian ini mencadangkan penggunaan Transformasian Wavelet Diskret (DWT)
bagi menggantikan Transformasian Fourier Diskret (DFT) untuk mengira pekali
cepstrum bagi menghasilkan ciri baru yang dipanggil Pekali Wavelet Cepstral (WCC).
Penggantian menggunakan DWT adalah disebabkan kelebihan yang terdapat pada
wavelet dalam menganalisa isyarat pegun. Pengiraan WCC dilaksanakan pada setiap
bingkai isyarat suara. Setiap bingkai isyarat suara diurai menggunakan DWT dan
tenaga logaritma pekalinya diambil. Langkah terakhir dalam pengiraan WCC dibuat
dengan mengira Transformasian Kosinus Diskret (DCT) tenaga logaritma tersebut
bagi menghasilkan WCC. Ciri WCC ini kemudianya disuap ke Rangkaian Neural
(NN) bagi tujuan kalsifikasi. Bagi menguji ciri baru WCC yang dicadangkan,
beberapa siri eksperimen telah dijalankan pada data suara TI-ALPHA bagi tujuan
perbandingan prestasi dengan ciri MFCC. Ujian telah dilakukan dengan mengambil
kira beberapa tingkatan hingar menggunakan Hingar Putih Gaussian (AWGN) dan
saiz ciri untuk pengecaman kebergantungan pengucap dan tidak kebergantungan
pengucap. Keputusan terbaik pada kondisi hingar 25 dB menunjukkan 30 pekali
WCC menggunakan Daubechies 12 memperoleh pengecaman sebanyak 71.97%
dibandingkan dengan hanya 37.62% menggunakan MFCC pada kekangan yang sama.
Sumbangan utama kajian ini adalah menghasilkan ciri WCC yang mempunyai prestasi
pengecaman yang lebih baik dari ciri MFCC pada hingar yang tinggi dan jumlah ciri
yang kecil.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Speech recognition over the past few decade has been an emerging field
thanks to the advance in computational power of computers and ongoing research,
development and discoveries in the field of speech processing, audio and acoustic.
These discoveries and breakthroughs have helped the field of speech recognition
mature over time. Speech recognition is in fact an interesting field combining various
other fields such as computer science, engineering, linguistics and security. In fact, it
is an interesting field of human computer interaction. Speech recognition may enable
humans to interact with machines more naturally as speech is one of the most natural
form of human interaction.

The framework of speech recognition system has several steps as shown in
Figure 1.1. These steps are divided into pre-processing, Feature extraction and
classification and is identical in almost all practical pattern recognition system (Pandya
and Macy, 1996). Each of these steps plays an important role in order for a speech
recognition system to function accurately and reliably. The first part which is the pre-
processing stage is usually concerned with speech processing such as analog to digital
conversion of speech, and speech enhancement techniques. Feature extraction which
is the second part of the framework deals with extracting certain unique features from
the signal that may contain significant information. In speech recognition systems,
features extracted must be unique to a particular word or utterances in order to aid the
classification step.

The final step in the speech recognition framework is the classification step. As
the name implies, this step classifies or recognize the utterance or speech fed by the
user of the speech recognition system. This step heavily employs Pattern Recognition
(PR) and Artificial Intelligence (AI) techniques as its main driving force.Although
the pre-processing and the classification part are vital components of any speech
recognition systems, the feature extraction plays a very important role in the accuracy
of speech recognition systems. In fact, it is also a very important step in almost all PR
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Pre-Processing

Feature Extraction

Classification

Speech Signal

Recognized Speech

Figure 1.1: Speech recognition framework

processes. Feature extracted must be robust to corrupted, degraded and noisy speech
signal i.e. even when the speech signal is subjected to various interferences, good
features may still be extracted and used for classification to yield accurate and reliably
recognition accuracy.

Another important aspect for the feature extracted is their ability to store
unique information regarding confusable acoustic feature of speech. For example the
acoustic similarity between letters ’B’ and ’D’ are in fact very hard to discriminate.
Hence, feature extracted from these confusable acoustic speeches must have the ability
to precisely store relevant acoustical features that will help the classification step
recognize the input speech.

Traditional speech feature like the Linear Predictive Coefficient (LPC), Linear
Predictive Cepstral Coefficient (LPCC), and the MFCC shows high performance
when used under benign conditions however, their performance decreases under the
influence of background noise and degradation which is particularly true for MFCCs
(Wu and Lin, 2009). A pure use of MFCCs as signal features has also shown to exhibit
lower performance in dealing with confusable acoustic sets compared to other refined
techniques as shown by Karnjanadecha and Zahorian (2001)

In order to address the problem regarding the weakness of the MFCCs,
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this research focuses on the feature extraction phase within the speech recognition
framework. An improvement for the cepstral coefficients to withstand degraded speech
is proposed. The proposed technique will be tested and evaluated with isolated English
alphabets. Theories, algorithms, simulations and results will be provided to prove the
proposed method in this study.

1.2 Problem Background

The need for accurate and reliable speech recognition system for application in
security systems, telephony and dictation poses a great challenge in the field of ASR.
One of the challenges is to extract speech signal features that can best represent or
discriminate among classes. Because of various interferences introduce to the speech
signal prior to the feature extraction phase, features extracted from the signals are
contaminated and may lead to accuracy reduction. This is somewhat true in almost all
practical environments. Thus, a need for speech feature that can accurately classify
and discriminate speech under practical environment that consist background noise
and degradation must be addressed. This would better aid the pre-processing and
classification stage and hence, yield better recognition rates for speech recognition
systems.

Conventional ASR system uses several feature extraction techniques to extract
distinct features from an input speech signal. However, the most popular and widely
used among feature extraction technique is the MFCC (Gowdy and Tufekci, 2000; Wu
and Lin, 2009). MFCCs are used because it models the human auditory perception
with regard to frequencies which in return can represent sound better (Abdallah and
Ali, 2010; Razak et al., 2008).

Even though MFCCs are widely used and has its own advantages, the problem
arises when the input speech signal is not clean or degraded. As a result, the MFCC
features extracted from these signal could be said as ”contaminated” as these features
also incorporate the distortions or degradations that were present in the signal. Thus,
MFCCs have a poor ability to withstand noise and degradations (Anusuya and Katti,
2011; Sarikaya et al., 1998).

Another problem with the MFCC feature is that it assumes each speech frame
used in its computation to be fixed in length and the signal analyzed within it as
stationary which in practice, is not quite true (Daqrouq and Al Azzawi, 2012; Shafik
et al., 2009). With fixed analyzing frames, localized events and abrupt changes in
the speech signal are poorly analyzed. These localized events of speech may contain
important information that can affect the recognition rate of a speech recognizer
(Gowdy and Tufekci, 2000).
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From a classification perspective, the MFCC extracted from a signal produces
large number of features (Jafari and Almasganj, 2010). For example, each frame of
speech produces 13 static MFCC coefficients while 39 coefficients for each frame
when the dynamic features (velocity and acceleration) are also extracted. The large
feature inputed to the classifier will require a computational expensive recognizer
(Flynn and Jones, 2012a; Paliwal, 1992). This is particularly true in NN speech
recognition systems. In a NN speech recognizer the number if input depends exactly
on the number of features extracted from the speech signal. Thus, a large number of
feature requires a large number of input nodes resulting in a computational extensive
recognizer. Furthermore, large number of features also requires large number of
storage.

MFCC features used in NN speech recognition system often uses high number
of input nodes because of the large number of features extracted. For example Salam
et al. (2009, 2011) requires 820 inputs for connected Malay digit and 360 inputs
for isolated Malay digits. While, for English alphabets Cole and Fanty (1990) used
617 inputs to the NN classifier. Reducing the number of feature used is also an
important aspect in a distributed speech recognition system in where feature extraction
and classification are done separately between a client and server (Flynn and Jones,
2012a). Thus the problem of reducing the number of features used while acquiring
good recognition rate is another issue to consider. Table 1.1 summarizes several
problems of the MFCCs.

In order to address these problems, many researches were conducted to further
enhance the capability of the MFCCs. One such way used by various researchers was
to adopt the wavelet transform. Research have shown that wavelet transform are robust
to noise and degradations (Farooq and Datta, 2004; Flynn and Jones, 2012b; Gowdy
and Tufekci, 2000). Combination of wavelets with other feature extraction techniques
as a hybrid feature extractor have also yielded better recognition rates (Abdallah and
Ali, 2010; Al-Sawalmeh et al., 2010; Shafik et al., 2009; Zhang et al., 2006). For
feature reduction, recent studies show their effectiveness in producing small feature
dimension as shown by Flynn and Jones (2012b).

1.3 Problem Statement

Mining the problem of the cepstral analysis methods which uses the DFT where
the analysis of speech signal is done in a fixed window setting and the issue of large
feature dimension produced especially from MFCC feature extraction we propose the
use of wavelets for cepstral analysis rather than the DFT. By using wavelets, the speech
signal is analyzed with a non fixed window scheme. With non fixed window analysis,
high frequency regions of the signal are analyzed with small windows while low
frequency regions are analyzed with large windows. With this, more local information
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Table 1.1: Problems with MFCCs

Problem Description

Robustness issues As stated by Anusuya and Katti (2011); Sarikaya
et al. (1998) MFCCs are not immune to noise as
an example in telephone speech where the speech is
degraded by convolutional channel noise.
MFCCs are easily corrupted as it uses DCT of the
mel-scaled log filterbank energy. DCT covers all
frequency bands thus a corruption in a frequency
band effect
the whole of MFCCs(Gowdy and Tufekci, 2000)

Fixed window/frame length As pointed out by Gowdy and Tufekci (2000),
MFCCs uses fixed window or frame of speech which
means that it assumes that only one information at a
time is conveyed.
This is not true as some frame might have voiced and
unvoiced sounds simultaneously

Large feature numbers From a recognizers perspective especially NN based
speech recognizers, the large numbers of features
extracted effects the computational cost of the
recognizer (Flynn and Jones, 2012a). For NN
recognizers the number of input to the NN are highly
dependent on the number of features extracted.

such as transients are extracted. Moreover, by using wavelets the size of the feature
vector can be effectively reduced. Thus, the primary research question for this research
is stated as:

• Can combination of DWT and cepstral analysis feature improve recognition
rate under noisy data and reduced feature dimension using neural networks?

To address the research questions posed, the research aims and objectives have
been identified and will be presented in the next section.
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1.4 Research Aims

The aim of this research is to propose a new feature extraction method by using
the DWT to compute the cepstrum of a speech signal therefore, a new set of speech
feature called WCC will be derived.

1.5 Objectives

In order to address the problem and achieve the aim of this study, the objectives
of the research are:

1. To develop a new speech feature by the use of DWT and cepstrum.

2. To test the developed features with English Isolated speech database in benign
and noisy conditions using neural network.

3. Compare the proposed features with MFCC.

1.6 Research Scope

To narrow the research scope and to be parallel with the problems and research
objectives the following scope has been agreed upon;

1. This research will be focusing on the feature extraction process within the SR
framework (Refer Figure 1.1).

2. Recognition task will be Isolated words.

3. Isolated words that will be used are from the English Texas Instruments (TI) 46
dataset alphabets.

4. For simulating speech signal degradation, AWGN will be used.
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1.7 Importance of Study

Speech recognition systems has many limitations especially in adverse or
noisy environments. In this thesis, we propose a new feature which has a small
feature dimension for neural network speech recognizer and invariant to noise. The
contribution of this thesis include:

1. A new set of features called WCC which are more noise invariant under small
feature dimensions. This is particular important in NN speech recognizers where
the input nodes are directly proportional to the number of speech features. Low
input nodes are desirable to decrease computational complexity.

2. An evaluation of NN based speech recognizer under various noisy conditions
and the effects of the NN learning rate and momentum constant under these
conditions. The results shows the importance of choosing suitable learning rate
and momentum constant for a specific task.

1.8 Thesis Overview

The thesis is organized as follows. Chapter 2 reviews some of the technical
background that are related and will be used in this thesis.

Chapter 3 presents the NN setup especially in estimating the most suitable
learning rate and momentum constant that will be used for almost all clean speech
experiments. Several initial speech recognition experiments using various values of
learning rate and momentum constant were conducted for this purpose.

In chapter 4, we proceed with the MFCC experiments. Here, raw MFCC
features are used for recognizing 26 English alphabets. Various noise level are tested
with three different training and testing environments. The result in this chapter will
be used for benchmarking purpose for our proposed WCC features.

In chapter 5 we conduct our proposed WCC experiments and compare the
results with the MFCCs. Similar to the experiments in chapter 4 we conduct the
experiments for the WCCs in various noise level with three different training and
testing environments. We also explore the ability of the WCC withstand feature
dimension while preserving higher recognition then the MFCCs. This is done by
varying the number of WCC coefficients to the NN classifier.
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Chapter 6 concludes this thesis and provides some contribution and suggestion
for further works.
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