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Abstract

In recent years there has been a marked increase in public awareness of environmental issues
particularly the deforestation of the world's rain forest. To this end there is a need for
accurate detection, inventory, monitoring and management for forest resources. Optical
remote sensing methods have successfully being utilised in the inventory of forest species.
The incorporation of ancillary data with remotely sensed data for digital data analysis in
determining forest species distribution have further increased the classification accuracy.
Ulaby et al. (1982) suggested that, in order to achieve high correct classification rates, it is
necessary to have uninterrupted (cloud free) coverage of the area under investigation for
successive passes of the satellite.

This paper set out to examine the extent to which satellite imaging radar or synthetic
aperture radar (SAR) augment the information content of satellite optical imagery in forest
classification and to what extent does the transformation of spectral data and the
incorporation of ancillary data improves the classification of forest trees.

Introduction

In the tropics where there is frequent cloud cover, the ability to acquire cloud-free aerial
photographs or digital multispectral image from aircraft or satellites are very scarce. One
way to rectify this interruption problem is to use an imaging radar, which effectively is
immune to the presence of clouds in the atmosphere. If used in conjunction with optical
sensors, radar can potentially: 1) improve the forest classification rates under clear sky
conditions because it responds to the geometrical and dielectrical properties of vegetation
(Ulaby et. al., 1975, 1979) differently than do optical sensors, and 2) serve as a "substitute”
for optical sensors during cloud-cover conditions.

The use of radar as remote sensing system is quite recent as compared to aerial photography
and digital multispectral scanners from aircraft or satellites. Radar remote sensing first
started in 1967 with the large scale topographic mapping project over the Darien province of
Panama for project RAMP (Radar Mapping of Panama). The project was flown by Ratheon
Autometric with Side-Looking Airborne Radar (SLLAR). The Darien province of Panama
was not mapped prior to 1967 even though the United States Air Force had previously
attempted for nearly 20 years to acquire aerial photography over this area. Persistent cloud
cover was the main obstruction in the use of aerial photography for mapping. During the
late 1960s and early 1970s large parts of the world were covered by airborne SLLAR surveys.




The best known and largest example of these surveys is Project RADAM (RADar
AMazonia) where the entire country of Brazil (8.5 million square km) was imaged. The use
of SLAR has been superseded by the use of synthetic aperture radar (SAR). This type of
radar permits fine resolution radar imagery to be generated at long operating ranges by the
use of signal processing techniques.

Radar remote sensing from space began with the launch of Seasat in 1978 and continued with
the Shuttle Imaging Radar (SIR) experiment in 1980s. Though there is an extensive archive
of radar imagery derived from these programmes, the data are not freely available nor as
well understood as other image products due to the complexity of their processing.
Nevertheless, their data have attracted considerable attention from researchers.

Despite the potential of radar remote sensing systems, research efforts utilising such systems
have been modest. Although not as widely available or as well understood as other remote
sensing systems, radar provides a wide array of unique natural resources applications. The
combination of microwave and optical remote sensing system would complement each other
in their study of natural resources.

Study Area

The study area was Forest of Dean, near Bristol, west of England. The elevation of the
study area range from 5 metres to 310 metres above mean sea level (a.m.s.1) with the forest
areas above 100 metres (a.m.s.l). The lowland areas consists of grasslands and farm, with
orchards at a higher level. Initially, 22 forest tree species were identified from the forest
stock map and sub-compartment database. The 22 species are made up of 11 deciduous and
11 coniferous types. After preliminary evaluation of the training sites, it was determined that
it was not possible to have each individual species as a class. This was due to the small
spatial coverage of some species which would not have allowed enough training samples to
be collected and would create difficulty in estimating covariances for training class statistical
analysis. Furthermore, species were usually mixed within a sub-compartment boundary. It
was extremely difficult to obtain training pixels for mixed classes in a sub-compartment,
therefore training samples were confined to classes that are homogenous within a sub-
compartment boundary. All of the training sites for each individual group or similar tree
species were combined according to their main group; for example; European, Japanese and
Hybrid Larch were combined as Larch; Douglas, Noble, Grand and Silver fir were combined
as Fir; Scots and Corsican pine were combined as Pine and Norway and Sitka spruce
combined as Spruce. In summary, there were three classes for deciduous trees which
comprise Oak, Beech and Larch and three classes for coniferous trees consisting of Pine, Fir
and Spruce.
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Figure 1. Locational map of Study Area. The larger rectangular area indicates the Seasat SAR coverage.
The smaller rectangular area shows the study area incorporating Seasat SAR, Landsat TM and Terrain data.

OAK BEECH LARCH SPRUCE FIR PINE

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std
™M1 27.6 1.7 26.2 1.8 24.2 1.8 21.7 1.7 23.2 2.1 23.3 2.9
TM2 9.5 1.3 9.1 1.0 7.8 1.4 5.6 1.7 6.1 1.7 6.4 2.3
TM3 11.6 2.3 1.1 2.2 7.0 1.9 4.2 1.9 4.7 2.4 6.4 4.2
TM4 41.5 6.5 41.3 3.9 38.6 5.5 37.4 8.9 46.7 11.8 36.9 4.3
TM5 66.9 8.5 58.4 6.9 46.2 6.6 31.8 7.2 40.1 8.4 42.3 12.8
TM7 28.2 3.8 24.2 3.2 18.4 3.0 11.3 2.9 13.7 3.8 16.2 6.5
PCA1 111.3 17.9 93.5 18.4 57.8 18.9 18.8 17.9 354 235 43.0 32.2
PCA2 85.8 11.8 79.5 7.9 69.2 9.5 58.4 13.8 75.0 16.6 64.6 11.3
PCA3 164.3 9.5 153.1 6.8 140.5 7.5 122.4 9.8 120.9 16.0 137.8 143
S123 99.1 21.0 88.8 20.0 54.1 21.7 20.4 203 30.3 259 38.2 34.4
S57 120.8 14.3 104.5 14.4 77.7 14.1 45.4 14.7 61.4 17.5 67.6 25.3
T4 85.2 11.6 80.6 9.5 80.3 10.9 76.9 16.5 66.7 18.2 80.3 10.3
1/5 52.5 6.0 57.1 5.8 66.8 7.7 89.9 17.3 75.2 12.4 72.5 12.6
3:2 149.4 14.8 148.7 17.6 112.1 20.8 93.3 255 95.9 275 117.7  29.2
475 78.6 9.9 90.1 9.5 106.6 13.4 145.8 18.8 142.9 27.8 115.6 22.2
7i4 86.7 12.6 74.0 7.1 60.8 11.3 39.1 10.3 39.4 15.7 54.7 17.7
283 114.6 8.5 114.8 10.0 135.0 11.6 147.8 17.9 146.1 17.8 1324 17.4
381 74.2 9.2 74.5 9.8 55.8 9.4 39.4 13.9 41.1 14.3 50.8 17.7
285 36.9 4.8 39.9 5.5 32.6 5.2 28.1 7.9 25.5 8.3 311 9.3
251 151.5 8.3 154.7 6.7 155.2 8.1 158.3 12.4 167.0 14.7 155.1 7.5
485 96.7 7.1 104.9 6.4 115.2 8.1 136.6 10.5 135.2 16.0 119.7 13.2
784 102.4 9.3 93.2 5.7 81.5 9.7 59.2 11.6 58.6 16.8 74.9 15.6
TAS1 76.6 11.7 68.8 9.1 53.6 9.8 37.9 12.7 51.9 14.3 48.1 15.9
TAS2 99.7 12.4 91.6 8.5 80.6 9.6 68.2 13.4 85.4 15.9 76.2 121
TAS3 134.5 13.4 151.6 1.1 171.2 10.3 197.5 9.7 189.8 14.9 177.1 21.7
TAS4 148.0 15.0 156.8 11.2 175.4 1.9 195.3 15.7 83.3 33.9 182.4 19.7
SLOPE 62.7 30.8 61.4 19.8 41.9 29.0 65.4 32.2 83.3 33.9 24.4 19.7
ASPECT 116.1 69.3 193.1 54.6 12.7 1.4 145.3  76.7 116.3 63.6 126.9 628
ZLEV 125.1 26.9 1 755 26.7 218.7 25.6 150.7 405 136.2 32.8 227.7 32.6
SAR 61.7 27.9 52.3 18.0 49.1 1.9 575 228 60.7 251 54.4 200

Table 1 The mean and standard deviation of forest tree species for all sets of bands.




Methodology

Digital satellite imagery from Landsat Thematic Mapper (scene path 203 row 24 date o
imaging 24 April 1984), Seasat Synthetic Aperture Radar (SAR) (ascending orbit 1307 and
date of imaging 26 September 1978), forestry stock maps and database and Ordnance Surve:
1:10,000 topographic maps were used for the analysis.

The processing of the 8-bit TM image and 16-bit Seasat SAR image was carried out using
programs written in FORTRAN 77 on a DIGITAL VAX 11/750 computer; all the program
were created in the Remote Sensing Centre University of Nottingham, England. The Landsar
TM and Seasat SAR have to be spatially and spectrally integrated. Experience to date
indicates that processed satellite image have excellent internal geometry. Consequently
image data can be rectified/registered to map coordinates using polynomials of the first or
second degree. The TM image have a spatial resolution of 30m and Seasat radar image have
a resolution of 25m. As the rectification/registration process usually requires the resampling
of data, therefore it is required to bring the pixels of the two data set to a common dimension
of 20 metres.

The contours from the OS 1:10,000 map and the Forestry maps were manually digitised
using the Laser-Scan System at the Geographic Information System Laboratory, University
of Nottingham. Elevation, slope and aspect map of the study area were created using the
Laser-Scan DTM software. The attributes of each digitised forest compartment were
obtained from the sub-compartment database. These attributes were land use, crop type.
species, planting year and soil type. These attributes were subsequently used as parameters
in the maximum likelihood classification of the satellite images.

The TM data were enhanced and transformed through principal components analysis, simple
ratio, normalised difference ratio and Kauth-Thomas (tasselled cap) transformation. The
SAR data were filtered to reduce speckle. The digitisation of contours created a DEM from
which slope, aspect and elevation images formed. All the above transformations created a
number of variables (images or features) which will be used in the classification of forest
species.

Seasat SAR Image and Speckle Noise Removal

SAR 1mages are well-known for the salt-and-pepper appearance or the speckle effect.
Speckle or the peculiar granular pattern is due to the random fluctuations in the return signal
observed from an area-extensive target represented by one pixel. The presence of speckle in
an image reduces the ability of a human observer to resolve fine detail. If analysis is to be
by the use of digital analysis equipment, including interactive viewing system, then this
speckle presents a problem. Numerous ways have been proposed to suppress speckle.
Basically SAR speckle suppression techniques fall into two categories (Lee, 1983, Muller and
Hoffer, 1989). Firstly the reduction of speckle before image formation and secondly the
application of a smoothing filter after images have been formed. Most techniques operate on
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the image after its formation and the speckle reduced using digital spatial filtering techniques.
In this study the speckle were filtered using the sigma filter of Lee (1983).

Feature Selection

Classification cost increases nonlinearly with the number of features used to describe pixel
vectors in multispectral space - i.e. with the number of spectral bands associated with a pixel.
With the use of maximum likelihood classification, the cost increase is quadratic. Therefore
it is sensible economically to ensure that no more features than necessary are utilised when
performing a classification. Features which do not aid discrimination, by contributing little
to the separability of spectral classes, should be discarded since they will represent a cost
burden. Removal of least effective features is referred to as feature selection, this being one
form of feature reduction.

Feature selection is normally carried out by determining the statistical separability of classes;
in particular, feature reduction i1s performed by checking how separable various spectral
classes remain when reduced sets of features are used. Divergence (D) is a commonly used
form of separability measure designed to predict best channel combinations for multispectral
classification of earth features. The use of the Divergence measure requires that the
measurements on the members of the k classes (or land use categories) are distributed in
multivariate normal form. The divergence measure (D) based on a subset of m of the p
teatures is computed for classes i and j following Singh (1984) with a zero value indicating
that the classes are identical. The greater the value of D(i,j) the greater is the class
separability based on the m selected features.

DGi.j) = 0.5 Tr (S - Sp) (871 - $°1))]
+0.5 Tr((S° L - STy - My v - MpT 1 ()

where S is the class covariance matrix.
M is the mean vector.
T is the transpose of the matrix.

The distribution of D(i,j) is not well known so a measure called the transformed divergence
is used instead. This has the effect of reducing the range of the statistics, the effect
increasing with the magnitude of the divergence. Thus when average are taken, the influence
of one or more pairs of widely-separated classes will be reduced. The transformed
divergence is calculated as;

TD(@,j) = c[l -exp (- D))/ 8)] (2)
with ¢ being constant used to scale the values of TD onto a desired range. 100 is used as a

scaling factor, which gives the value of TD to be interpreted in the same way as percentages.
A value of TD of 80 or more indicates good separability of the corresponding classes 1 and j.
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The value of TD(i,j) are average for all possible mutually-exclusive pairs of classes i and j
and the average (the average pairwise divergence) is denoted by TD,y,

TDqy = 2/k(k-1)TD(,}) ?3)

The aim of feature selection or class separability is to produce the subset of m features that
best combines classification accuracy and computational economy. The number of subsets of
size m that can be drawn from a set with p elements is;

p) ,
B e (4)
)

m!(p — m)!

e N e N N

the symbol ! indicates factorial.

In the study area 30 channels of spectral data (see Table 1) were derived from the original 6
TM bands, its transformation (principal component analysis, simple ratio, normalised
difference ratio and tasselled cap), DEM and SAR, all the channels to be used for the
classification. Using equation 4, and determining a sub-set of 4 from 30 would give 27405
subsets. The computation of such a large number of the average pairwise divergence is to be
avoided. The problem of selection of more likely subsets is similar to the problem of
determining the best subset of independent variables in multiple linear regression. Inter class
(pairwise all classes) transformed divergence value for each band or set of bands were
computed from the scale of O to 100. The choice of best four channels for each set of bands
were computed by divergence and the results are shown in Table 2 to Table 6.

Number of Av.Tr. Band numbers .....
variables Divergence

] 12.22
2 66.40
3 77.39
4 84.60
5 89.74
6 91.46
7 92.91
8 93.96
9 94 .83
10 95.41
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1 =TMI 2=TM
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3=TM3 4=TM4 5=TM5 6 = TM7

Table 2. Summary of Feature Selection for TM Bands with DEM and SAR.
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Number of Av. Tr. Band numbers ... ! Number of Av. Tr. Band numbers .....

variables ~ Divergence ! variables  Divergence
!
!
[ 532 3 ! 1 10.71 2
2 7149 3 E o2 6776 2 E
3 8186 3 E 5 '3 g1.12 2 E 4
4 8797 3 E S5 A 14 8741 2 E 4 A
S 9381 3 E S5 A2 'S 9070 2 E 4 A 1
6 9448 3 E 5 A 2 4 ' 6 92.41 2 E4 A 1S
7 99 3 E 5 A 2 41 YT 9336 2 E 4 A1 S 5
8 9752 3 E S5 A 2 41 S v 8 9418 2 E 4 A 1 S 5 3
9 9778 3 E 5 A 241 S8R 9 948 2 E 4 A1 S5 3R
!
!
1=PCAl of TM 1-5& 7. ! [ =TMI/TM4. 2= TMI/TMS.
2=PCA20of TM -5 & 7. ! 3=TM3/TM2 4 = TM4/TMS5.
3=PCA3 of TM 1-5 &7. ! 5=TM7/TM4.
4 =PCAIl of TM 1,2&3. 5=PCAIl of TM 5&7. !
1
S =Slope A = Aspect E = Elevation R=SAR
Table 3. Summary of feature selection for Table 4. Summary of feature selection for
Principal Component Analysis with simple ratio with DEM and SAR.

DEM and SAR

Number of Av.Tr. Band numbers .....
variables Divergence

Number of Av.Tr. Band numbers .....
variables Divergence

!
!
!
!
1 9.67 1 ! { 47.17 E
2 63.68 1 E ! 2 7297 E 3
3 75.72 I E 6 ! 3 81.22 E 3 A
4 32.82 1 E 6 A ! 4 87.16 E 3 A 2
5 87.16 Il E 6 A 4 ! S 9069 E 3 A 2 1
6 89.92 Il E 6 A 43 ! 6 9237 E 3 A 2 1 S
7 9176 | E 6 A 4 3 S ! 7 9320 E 3 A2 1 SR
8 9310 | E 6 A 4 3 S 5 ! 8 9393 E 3 A2 1 S R 4
9 95.65 1 E6 A 43S 52 !
10 96.15 | E 6 A 4 3 S 5 2 R !
! | = Brightness 2 = Greenness
! 3 = Wetness 4 = Nonesuch
1 =(TM2-TM3)/TM2+TM3) 2 =(TM3-TM1)/TM3+TM1) !
3 =(TM3-TM35)ATM3+TMS5) !
4 = (TM4-TM1Y/(TM4+TM1) 5 =(TM4-TM3)(TM4+TM5) !
t
i
Table 5. Summary of feature selection for ! Table 6. Summary of feature
selection normalized difference ratio with ! for Tasselled Cap bands
DEM and SAR. with DEM and SAR.
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Maximum likelihood classification

The classification algorithm used was the supervised Gaussian maximum likelihood classifier.
This classifier has been demonstrated to be extremely powerful and efficient in a great
number of investigations for land cover classification from multispectral imagery (Tom and
Miller 1984, Maselli er al. 1990). However, it is well recognized that there are drawbacks
to the use of this algorithm, most notably the assumption that each cover class is modelled by
unimodal probability distributions. When applied to highly heterogeneous surface, the extent
of some cover classes tends to be overestimated with respect to that of other classes, so that
the general utility of the entire process can be seriously decreased. In the use of this
algorithm care was taken to ensure that classes with distinct multimodal probability
distributions are subdivided into unimodal Gaussian spectral classes.

Results

From Table 1, the mean and standard deviation of each forest tree for every channel were
tabulated and it can be concluded emprically that forest tree species that gave a high standard
deviation value would not gave a good separation between forest clases. If these channels
were used in the clIf these channels were used in the classification process would result in a
lower classification accuracy. It is quite difficult to choose the best four channel for
classification based on empricall formula and this task could be overcome by the divergence
measure.

The forest class separability for the five sets of channels were analysed statistically through
divergence measure and the results are shown in Table 2 to Table 6. From these tables it
could be shown firstly a single band or channel would give an average transformed
divergence measure of less than 10. As we increase the channel to two and above the
average transformed divergence measure increased significantly to above 60. This indicates
that more information could be obtained with two or more channels. Up to a point as one
increases the number of channels, the average transformed divergence measure increases
very slowly and this could be observed when more than five channels were used. Thus in
this study the best four channels were used for classification which gave a transformed
divergence measure of over 80.

The addition of SAR data in the five sets of channels as indicated in Table 2 to 6, all gave
SAR a very low level of important. The irrelevant of filtered SAR data may be attributed
firstly by the data quality, which was rescaled from 16-bit to an 8-bit dynamic range.
Secondly the filtered process of speckle reduction, blurs the image which finds it difficult to
select good training areas. The third factor may be due to the character of Seasat SAR
wavelength of 23.5 cm which register the return signal from forest species during September
when the data were recorded. In September most of the deciduous and coniferous trees begin
to shed their leaves, thus the return signal from deciduous and coniferous trees were quite
difficult to differentiate which creates a spectral overlap.

Terrain data (Elevation) plays an important part in the improvement of separability and
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overall accuracy of forest tree species. Elevation data seems ion channel (after spectral
data), selected by divergence criteria. This was due dominantly by the spatial distribution of
forest classes on higher elevation above 100 metres.

Conclusion

On the basis of source data and the classifier used it is concluded that Seasat SAR do not
make any significant contribution to the separability of forest trees, but terrain data improves
the classification accuracy. The refinements in training and class selection would certainly
have further boasted the accuracy of forest tree classification.

This study has establish a routine operational use of remote sensing, imaging radar and other
ancillary data integration for the classification of forest trees and the results could be
incorporated in a GIS. It recommends the used of new improved classifier and new
generation of improved radar satellite data sources such as the European Earth Resources
Satellite (ERS-1) or the Japanese Earth Resources Satellite (JERS-1).
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