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ABSTRACT

In orthopedic surgery, a damage bone is removed by method of machining in
order to enable implant fixation. This requires high precision tools and techniques to
prevent mistakes such as overcut and to avoid injuries to the surrounding tissues.
This project involved the turning process where bovine bone samples were turned
based on experimental conditions suggested by the response surface methodology
(RSM) with a view of determining the optimum condition within the range
investigated. At the same time an initial investigation on the cutting mechanism
fundamentals for bone material was undertaken. The experiments were performed
under dry cutting conditions. Cutting speed, depth of cut and feed rate were the main
factors investigated while the main cutting force and surface roughness were the
responses. Experiments were performed at cutting speeds ranging from 55 to 130
mm/min, with depths of cut in the range of 0.1–0.3mm, and feed rate from 0.04 to
0.09 mm/rev. The experimental plan was based on the central composite design
(CCD). Chips after machining were observed and analyzed in order to see the
influence of cutting conditions. The proposed mathematical models are adequately
accurate to predict the performance indicators within the experimental range
investigated. The most influencing factor on the cutting force is depth of cut,
followed by feed rate, cutting speed and depth of cut interaction, depth of cut and
feed interaction, and cutting speed respectively. Feed rate has the most effect on
surface roughness while the cutting speed and feed rate2 factors presented secondary
contribution on the surface roughness response. The partially continuous chips were
observed at the cutting condition of 55 mm/min speed, 0.3mm depths of cut and 0.09
mm/rev feed rate indicating the possible occurrence of ductile mode machining on
bone.
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ABSTRAK

Dalam pembedahan ortopedik, tulang yang rosak dikeluarkan dengan kaedah
pemesinan untuk membolehkan pemasangan implan. Pembedahan ini memerlukan
peralatan berkeupayaan tinggi dan teknik untuk mengelakkan kesilapan pemotongan
dan mencegah kecederaan tisu di sekitarnya. Projek ini dilakukan secara eksperimen
ke atas sampel tulang lembu dengan menggunakan kaedah tindak balas permukaan
(RSM) untuk menilai keadaan pemesinan optimum pada julat pemesinan yang
disiasat. Pada masa yang sama kajian awal mengenai asas mekanisme pemotongan
untuk bahan tulang dilakukan. Ujikaji telah dijalankan secara pemotongan kering.
Kadar kelajuan, kedalaman pemotongan dan kadar suapan adalah faktor utama yang
dikaji manakala tindak balasnya adalah daya pemotongan dan kekasaran permukaan.
Kadar kelajuan semasa memotong adalah dalam julat 55-130 mm / min, kedalaman
pemotongan dalam julat 0.1 - 0.3mm, dan kadar suapan dalam julat 0.04-0.09 mm /
rev. Eksperimen ini adalah berdasarkan kepada reka bentuk pusat komposit (CCD).
Selepas eksperimen dilakukan, cip dikaji dan dianalisis berdasarkan kepada keadaan
pemotongan. Secara matematik, ianya adalah bersesuaian dan tepat untuk
meramalkan prestasi bagi pelbagai faktor yang telah dikaji. Faktor yang paling
mempengaruhi daya pemotongan adalah kedalaman pemotongan, diikuti oleh kadar
suapan, interaksi kelajuan pemotongan dan kedalaman pemotongan, interaksi
kedalaman pemotongan dan kadar suapan dan kelajuan pemotongan. Kadar suapan
mempunyai kesan besar ke atas kekasaran permukaan manakala kelajuan
pemotongan dan kadar suapan2 memberi sumbangan sekunder kepada kekasaran
permukaan. Cip separa berterusan diperhatikan pada kelajuan pemotongan 55
mm/min, kedalaman pemotongan 0.3 mm dan kadar suapan 0.09 mm/rev
menunjukkan kemungkinan berlakunya pemesinan mod mulur pada tulang.
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CHAPTER 1

INTRODUCTION

1.1 Background

Machining is well known as a manufacturing process for removing unwanted

material in the form of chips by the use of machine tools into the desired shape, with

size and finish as specified to fulfill design requirements. The majority of

manufacturing applications involving machining involve metals i.e. aluminum, steel,

stainless steel, copper, etc. Although theoretical analysis of the metal cutting

processes is complex, the application of these processes in the industrial world is

widespread. Not only metal, machining processes can be further used to produce

components from various types of materials such as polycarbonate, plastic,

fiberglass, acrylic as well as  brittle materials such as glass, ceramic, cast iron,

silicon, and bone etc. For a broad range of materials, machining processes are able to

perform on a wide variety of machine tool and variation of the combination of

machining condition.

For bone material, methodology of machining bone in surgery which is

developed in means of medicine has existed since when people start to heal other

people and animal. Up to now people still used conventional method in bone

machining such as sawing, drilling and milling to repair the broken or inflame part of

bone in the best possible way. In orthopedic surgery, fracture repair is performed by

placing the bone in the proper position and is then fixated by attaching screws, pins,

or plates to the bone. In order to attach these fixating devices, bone needs to be

machined (i.e., by drilling) in multiple locations. Another form of bone machining is
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performed during dental implantation, where small amount of bone is removed by

machining (i.e., drilling) to provide a space for placing dental implant in the jaw

bone.

Bone machining actually induces new wound damage to the bone tissue.

This requires the process to be performed gently not to over damage the surrounding

healthy tissue. There are some effects which may occur due to the influencing factors

during bone operation. First is the thermal necrosis, the temperature occurred during

machining causes tissue damage which results in infection, implantation failure,

delayed recovery period, and severe pain. Bone necrosis was reported to occur when

the machining temperature reaches 56°C for over 10 seconds [1]. Second is

machining force, the excessive force have an effect on the penetration of surgical

instruments, the surgeon can control the instrument smoother when force is

minimum and more precision operation is achieved. Thus when these effect need to

be controlled within this limit by optimum parameter of bone machining to achieve

the best possible shortest time and avoid the thermal damage on machined bone.

As the modern surgery medicine, the cooperation between the technical and

medicine scientific is growing daily. However the study on bone machining and

especially in the surface integrity and chip morphology analysis area is still very

rare. Due to the limited data of bone machining, brittle material such as silicon etc.

which can accomplish ductile mode machining over brittle mode machining is

studied due to its characteristic is similar to bone to find out the optimum setting

parameters in bone machining. The chip formation which can be used to indicate the

ductile mode machining in brittle material is also considered. Since when the brittle

mode machining is transform to ductile removal machining, the high-quality surface

finish and smaller cutting energy are produced. These results are required in

orthopedic surgery.

Thus the project’s goal is to study parameters and influence factors focusing

on these two approaches in bone turning process. It is believed that the result from

this study can convert to determine the optimum setting to achieve the best possible

result for usual bone machining in medicine surgery
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1.2 Problem Statement

For surgical bone in medicine, most of processes which have been done are

drilling and milling.  Some of researches proposed the influenced factors and

optimum parameters for bone machining on thermal distribution and force during

machining. Some results presented the guide line of cutting condition but the

fundamental understanding of bone machining process and chip formation

mechanism are still unclear. Moreover very few studies in literature focus on surface

integrity on machined bone, however the good quality surface finish is desirable for

bone machining. Since the machined surface result can indicate by the chip

formation and cutting force, the phenomena occurred due to theses effect can be

related and described by compare to the results which have been proposed by other

studies.

Brittle characteristic of bone may cause the fracture during machining. In this

case, the ductile mode machining is considered due to it can be achieved through

continuous chip formation and good surface integrity under significant cutting

condition in brittle material.  However the analysis of surface integrity and chip

morphology for bone machining by employing usual surgical bone process such as

drilling and milling, there is complicated method to determine the optimum

parameters for machining and examine chip formation via these processes. Therefore

tuning process will be used in this project since it is easier method to conduct the

experiment and approach the analysis of result in chip morphology.

1.3 Objectives of the Study

The purpose of this research was to observe effect of various cutting

parameter on Surface integrity and chip morphology of cortical bone. The following

objectives were to be achieved in this research:
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 To explore the effect of various process parameters on various

machinability criteria.

 To develop mathematical models which relate various process

parameters on various machinability criteria.

 To study chip morphology as a function of cutting parameters.

1.4 Scope of the Study

The femur bones form adult bovines were chosen for the turning experiment.

Samples were prepared to be machined using turning process (using CNC lathe

machine). Three set of cutting parameters (cutting speed, feed rate and depth of cut)

were controlled and performed on the experiment. The experiment plan was

designed by using response surface methodology (RSM). Cutting force of turning

was captured simultaneously when bone was machined. Next surface integrity was

investigated on the external topography of surfaces (surface roughness) and then

chip morphology was analyzed.

1.5 Thesis Organization

The thesis is divided into six chapters. Chapter 1 provides a general overview

of  the  study. Chapter 2 was organized to  summarize  the  literature  reviews  of

the related topic to guide the study towards achieving the objective. The

experimental set up and techniques used are explained in Chapter 3. All the

experiment data and result are presented in Chapter 4. In Chapter 5, the results are

discussed and the comparisons are made to the work done in previous research. The

conclusions of the study and the recommendations for future work are given in

Chapter 6.
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