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ABSTRACT 

Fault tolerance is a mechanism that is used in the design of systems with high 

reliability. Software fault tolerance usually is achieved through the diversity and 

redundancy that it adds additional complexity to the system design, and it focuses on 

the crosscutting concerns that will affect overall software units. Implementation of 

the fault tolerance techniques through the approaches such as object oriented 

programming reduce reusability, maintainability, and degree of the system 

modularity because crosscutting concerns distribute among objects and increases 

complexity , therefore to reduce the complexity aspect-oriented introduced. Aspect-

oriented is a new thinking approach that separate crosscutting concerns from the 

components. Aspect oriented approach can be used in the high complex systems and 

implementing fault tolerance. Some works and research are performed in this filed 

but for fault tolerance techniques such as recovery blocks there is not any aspect-

oriented model or design patterns. The main purpose of this study is modelling fault-

tolerant technique based on aspect-oriented approach. Hence a highly used fault 

tolerance technique such as recovery blocks is selected for study and investigated to 

model by aspect-oriented. Therefore, crosscutting concern has been identified and is 

modelled aspect-oriented approach. Then a design model that is called the "aspect-

oriented design model recovery blocks" is introduced in order to improve the 

reusability, maintainability and system modularity. The proposed model was 

evaluated with a case study by some metrics such as separation of concerns, level of 

dependability between components and size of program and their advantages and 

disadvantages has been described against object-oriented approach. As the result 

showed, the aspect-oriented model can decrease complexity by improving 

crosscutting concerns distributions and therefore improve system modularity that 

increases reusability and maintainability.
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ABSTRAK 

Kesalahan terkawal adalah satu mekanisme yang digunakan didalam sistem 

dengan keboleh percayaan tinggi. Kesalahan terkawal dalam satu perisian biasanya 

dicapai melalui pengembangan dan pengulangan yang menambah kompleksiti rekaan 

sesuatu sistem dan ia menumpukan kepada kerisauan tentang pengubahansuaian 

yang akan memberi kesan kepada keseluruhan unit perisian. Implementasi kesalahan 

terkawal melalui pendekatan seperti pengaturcaraan berasaskan objek mengurangkan 

keboleh gunaan, keboleh selenggaraan dan darjah modulariti sistem kerana 

pengubahsuaian dibahagikan antara objek dan meningkatkan kompleksiti, 

disebabkan itu untuk mengurangkan kompleksiti orientasi berasaskan aspek 

diperkenalkan.  Orientasi berasakan aspek adalah satu kaedah menyelesaikan 

masalah pengubahsuaian dari komponen perisian.  Di sebabkan orientasi berasaskan 

objek boleh di gunakkan dalam sistem yang kompleks dan mempunyai kesalahan 

terkawal. Beberapa kajian telah dijalankan dalam bidang bagaimanapun, dalam 

perkara seperti halangan kembali masih belum ada pendekatan orientasi berasaskan 

aspek. Jadi kajian ini memilih bidang halangan kembali untuk mengkaji model 

orientasi berasaskan objek. Disebabkan itu kerisauan tentang pengubahsuaian telah 

dikenalpasti. Kemudian satu rekabentuk model yand dinamakan aspect-oriented 

design model recovery blocks diperkenalkan untuk meningkatkan keboleh gunaan, 

keboleh selenggaraan dan modulariti sistem. Model  yang dicadangkan di nilai 

menggunakan kajian kes dan matrik seperti kerisauan terasing. Darjah 

kebergantungan antara komponen dan saiz program dan kelebihan serta kekurangan 

berbanding pengaturcaraan berasaskan objek. Berdasarkan keputusan yang 

ditunjukkan, orientasi berasaskan aspek mengurangkan kadar kompleksiti dengan 

memperbaiki pengubahsuaian seterusnya meningkatkan modulariti sistem, serta 

menjadikan keboleh gunaan dan keboleh selenggaraan semakin meningkat.
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CHAPTER 1 

1 INTRODUCTION 

1.1 Introduction 

In the safety-critical systems modifications and changes are very important 

and are time-consuming because of the various tests and validation tasks that should 

be performed after each change. Fault-tolerance is one of the most known methods 

for designing safety-critical systems. Reality, fault tolerance is the ability of a system 

to continue performing its intended function despite faults. Fault tolerance is used in 

the designing of systems with high reliability. Fault tolerance usually is achieved by 

diversity and redundancy mechanisms. The fault tolerance is a non-functional 

requirement that usually adds high complexity in the design of safety-critical system 

when is implemented based on an approaches such as object oriented, because of 

cross-cutting concerns. Crosscutting concerns consist in software system features 

having the implementation spread across modules as tangled and scattered code. In 

many cases, these crosscutting concerns represent design model, invocations to 

model features. When a design model evolves, this can cause the addition or the 

change of scattered and tangled code, which contributes to the evolution of the 

crosscutting concern. A concern is scattered if it is related to multiple target 

elements, and tangled if both it and at least one other concern are related to the same 

target element. A crosscutting concern is a concern that is scattered. 
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1.2 Background of the Problem 

Recently, the use of aspect-oriented programming in the field of fault 

tolerance has become one of the research topics. Fabry (1998) used aspect-oriented 

programming to define a "replication" aspect in order to improve the reusability and 

greater transparency of replication in the distributed environment. Also Szentiványi 

and Nadjm-Tehrani (2004) used aspect-oriented programming to improve 

performance and maintainability of fault-tolerant servers built with middleware 

support and migrate some operations of FT-CORBA middleware into application 

level. In this research, an existing FT-CORBA platform was used and performed 

some modifications was performed to support the aspect-oriented application 

extensions. Szentiványi and Nadjm-Tehrani’s (2004) results showed that aspect-

oriented programming can be used to implement non-functional requirements 

specially for availability and reliability. This two quality attribute can be improved 

by object replication mechanisms. Herrero and Sánchez (2001) presented a 

replication model named JReplica based on aspect-oriented programming. JReplica 

can separate characteristics of the replication code from functional behaviours of 

objects. Also, it is possible that programmers define new behaviours to determine 

fault tolerance requirements. The model presented by Herrero and Sánchez (2001) on 

the aspect-oriented architecture includes two levels (Figure 1.1): 

 Functional Level: In this level Object functionality is defined and two 

new entities (in, out) in order to communicate objects with its aspects 

attached to each object. 

 Aspect Level: In this level, aspects are defined. Each object can be 

associated with one or more aspects. 
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Figure 1.1 The aspect model (Herrero, Sánchez, 2001) 

Alexandersson and Öhman (2010) provided one of the best works about the 

use of aspect-oriented programming to implement fault-tolerant tactics. 

Alexandersson and Öhman (2010) have been defined a set of fault-tolerant 

mechanisms which include: recovery cash, time redundant, recovery blocks, runtime 

checks and control flow checking. Also each one of these mechanisms is surveyed 

and implemented by AspectC++ language and analyzes recovery blocks mechanism 

for a specific case study. Alexandersson and Öhman (2010) noticed that time 

redundant, runtime checks and control flow checking mechanisms can be 

implemented well in an aspect-oriented programming language. 

Afonso and Silva (2008) provided a fault tolerance approach for application 

programmers of real-time embedded systems in the operating system core by aspect-

oriented. Afonso and Silva (2008) introduced a fault tolerance framework and then 

used it as aspect and implemented using aspect-oriented programming. Figure 1.2 

shows the framework. 
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Figure 1.2 Fault tolerance framework (Afonso and Silva, 2008) 

A few researches have focused on introducing and implemented aspect-

oriented programming patterns. Hameed and Williams (2010) provided a design 

pattern on the base of aspect-oriented for error detection. Also Chavez (2004) and, 

Castor Filho and Garcia (2007) introduced an Error handling pattern to manage 

exceptions (Figure 1.3). 
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Figure 1.3 Fault tolerance of Design Pattern Base on Aspect Oriented (Hameed and Williams, 2010) 

1.3 Problem Statement 

Fault tolerance is used in the designing of systems with high reliability. Fault 

tolerance usually is achieved by diversity and redundancy mechanisms. The fault 

tolerance is a non-functional requirement that usually adds high complexity in the 

design of safety-critical system when implemented based on an approach such as 

object oriented, because of cross-cutting concerns. Cross-cutting usually includes 

two problems: tangling and scattering. Tangling is a component implementation with 

more than one requirement and scattering is the one with one requirement. 
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In this research we believe that aspect-oriented design reduces the complexity 

and also improves the performance of safety-critical systems because Object oriented 

approach focuses on the improvement of the code and programming 

(implementation) while aspect oriented one focuses on the concerns. In this research, 

the accuracy of the solution and response to improve fault tolerance are evaluated 

and also it is focused on the reduction of the complexity and improvement of the 

performance of fault tolerant design by aspect-oriented approach. 

1.4 Goal 

The main goal of the research is to improve the fault tolerant techniques by 

using aspect-oriented design in order to reduce the complexity and improving the 

performance of safety-critical systems. 

1.5 Objectives 

 To investigate and select techniques of the fault tolerance design. 

 To propose fault tolerance model using aspect-oriented concept. 

 To evaluate performance and complexity of fault tolerant design by 

the proposed model. 

1.6 Scope 

In addition to fault tolerance, there are other method to achieve the high 

dependability and high reliability that are beyond the scope of this study. Also, fault 

tolerant design can be implemented in hardware or software and/or different levels of 

software such as the operating system, middleware and application level. In this 

study, the scope is application level of fault tolerance will be used and using 

AspectC++. 
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In this section, the scope of the research is given based on each objective as 

below: 

To investigate and select techniques of the fault tolerance design: In the first 

objective, it is crucial to have a solid understanding on the concepts of fault tolerance 

techniques such as Recover blocks, N-Version programming, Distributed recovery 

blocks, N-self checking programming, Consensus recovery blocks and Acceptance 

voting, and then select better technique. According to some concepts in Literature 

Review is selected recovery block because of this technique is the main technique.  

To propose fault tolerance model using aspect-oriented concept: Based on the 

investigation to achieve the first objective, the model based on aspect oriented design is 

proposed in order to, reduce complexity and improve performance.  

To evaluate performance and complexity of fault tolerant design by the 

proposed model: Based on the investigation to achieve the second objective, it is crucial 

to have a solid understanding on the some metrics such as, separation of concern 

metric, coupling metrics and size programme metrics. And use these metrics for 

compare between object oriented model and aspect oriented model. 

1.7 Deliverables 

Each phase in the research has contributed to the deliverable documents as 

below where these reports are provided in the future chapters in this thesis: 

 Concepts and techniques report (Chapter 2) 

 Proposed models report (Chapter 4) 

 Proposed models evaluation report (Chapter5) 

 Conclusion (Chapter6) 
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1.8 Summary 

In this chapter the problem was stated and, solutions and objectives were 

proposed. In this research it is believed that aspect-oriented design reduces the 

complexity and also improves the performance of safety-critical systems because 

Object oriented approach focuses on the improvement of the code and programming 

(implementation) while aspect oriented approach focuses on the concerns. This 

research, evaluates the accuracy of the solution and response to the improvement of 

fault tolerance also focuses on the reduction the complexity and improving the 

performance of fault tolerant design by aspect-oriented approach. Crosscutting 

concerns consist in software system features having the implementation spread 

across modules as tangled and scattered code. In many cases, these crosscutting 

concerns represent design model, invocations to model features. When a design 

model evolves, this can cause the addition or the change of scattered and tangled 

code, which contributes to the evolution of the crosscutting concern. 
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