

IMPROVING MODELLING FAULT TOLERANCE BASED ON ASPECT-

ORIENTED DESIGN

AHMAD RAHIMI DENJKOLAEI

A thesis submitted in fulfilment of the

requirements for the award of the degree of

Master of Software Engineering

Advanced Informatics School

Universiti Teknologi Malaysia

2013

v

ABSTRACT

Fault tolerance is a mechanism that is used in the design of systems with high

reliability. Software fault tolerance usually is achieved through the diversity and

redundancy that it adds additional complexity to the system design, and it focuses on

the crosscutting concerns that will affect overall software units. Implementation of

the fault tolerance techniques through the approaches such as object oriented

programming reduce reusability, maintainability, and degree of the system

modularity because crosscutting concerns distribute among objects and increases

complexity , therefore to reduce the complexity aspect-oriented introduced. Aspect-

oriented is a new thinking approach that separate crosscutting concerns from the

components. Aspect oriented approach can be used in the high complex systems and

implementing fault tolerance. Some works and research are performed in this filed

but for fault tolerance techniques such as recovery blocks there is not any aspect-

oriented model or design patterns. The main purpose of this study is modelling fault-

tolerant technique based on aspect-oriented approach. Hence a highly used fault

tolerance technique such as recovery blocks is selected for study and investigated to

model by aspect-oriented. Therefore, crosscutting concern has been identified and is

modelled aspect-oriented approach. Then a design model that is called the "aspect-

oriented design model recovery blocks" is introduced in order to improve the

reusability, maintainability and system modularity. The proposed model was

evaluated with a case study by some metrics such as separation of concerns, level of

dependability between components and size of program and their advantages and

disadvantages has been described against object-oriented approach. As the result

showed, the aspect-oriented model can decrease complexity by improving

crosscutting concerns distributions and therefore improve system modularity that

increases reusability and maintainability.

vi

ABSTRAK

Kesalahan terkawal adalah satu mekanisme yang digunakan didalam sistem

dengan keboleh percayaan tinggi. Kesalahan terkawal dalam satu perisian biasanya

dicapai melalui pengembangan dan pengulangan yang menambah kompleksiti rekaan

sesuatu sistem dan ia menumpukan kepada kerisauan tentang pengubahansuaian

yang akan memberi kesan kepada keseluruhan unit perisian. Implementasi kesalahan

terkawal melalui pendekatan seperti pengaturcaraan berasaskan objek mengurangkan

keboleh gunaan, keboleh selenggaraan dan darjah modulariti sistem kerana

pengubahsuaian dibahagikan antara objek dan meningkatkan kompleksiti,

disebabkan itu untuk mengurangkan kompleksiti orientasi berasaskan aspek

diperkenalkan. Orientasi berasakan aspek adalah satu kaedah menyelesaikan

masalah pengubahsuaian dari komponen perisian. Di sebabkan orientasi berasaskan

objek boleh di gunakkan dalam sistem yang kompleks dan mempunyai kesalahan

terkawal. Beberapa kajian telah dijalankan dalam bidang bagaimanapun, dalam

perkara seperti halangan kembali masih belum ada pendekatan orientasi berasaskan

aspek. Jadi kajian ini memilih bidang halangan kembali untuk mengkaji model

orientasi berasaskan objek. Disebabkan itu kerisauan tentang pengubahsuaian telah

dikenalpasti. Kemudian satu rekabentuk model yand dinamakan aspect-oriented

design model recovery blocks diperkenalkan untuk meningkatkan keboleh gunaan,

keboleh selenggaraan dan modulariti sistem. Model yang dicadangkan di nilai

menggunakan kajian kes dan matrik seperti kerisauan terasing. Darjah

kebergantungan antara komponen dan saiz program dan kelebihan serta kekurangan

berbanding pengaturcaraan berasaskan objek. Berdasarkan keputusan yang

ditunjukkan, orientasi berasaskan aspek mengurangkan kadar kompleksiti dengan

memperbaiki pengubahsuaian seterusnya meningkatkan modulariti sistem, serta

menjadikan keboleh gunaan dan keboleh selenggaraan semakin meningkat.

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

ACKNOWLEDGEMENT iv

ABSTRACT v

ABSTRAK vi

TABLE OF CONTENTS vii

TABLE OF TABLES x

TABLE OF FIGURES xi

LIST OF ABBREVIATIONS xiv

LIST OF APPENDICES xv

1 INTRODUCTION 1

1.1 Introduction 1

1.2 Background of the Problem 2

1.3 Problem Statement 5

1.4 Goal 6

1.5 Objectives 6

1.6 Scope 6

1.7 Deliverables 7

1.8 Summary 8

2 LITERATURE REVIEW 9

2.1 Introduction 9

2.2 Fault tolerance 9

2.2.1 Dependability and Fault Tolerance 10

2.2.2 Relationship between Fault, Error and Failure 13

viii

2.2.3 Redundancy 14

2.2.4 Diversity Design 14

2.2.5 Fault Tolerance Scenario 15

2.2.6 Software Fault Tolerance 18

2.3 Selection Process 35

2.4 Aspect Oriented Design 37

2.4.1 Separation of Concerns 37

2.4.2 Aspect oriented Programming 39

2.4.3 Fault tolerance using aspect oriented 45

2.5 Evaluation Metrics 47

2.5.1 Separation of Concern Metrics 48

2.5.2 Coupling Metrics 48

2.5.3 Size Metrics 49

2.6 The Previous Models 49

2.6.1 Strengths and Weaknesses of the Previous Models 53

2.7 Summary 55

3 PROJECT METHODOLOGY 56

3.1 Introduction 56

3.2 Tools & techniques 59

3.3 Models 60

3.4 Evaluate metric /model 60

3.5 Summary 60

4 FAULT TOLERANCE BASED ON ASPECT ORIENTED 61

4.1 Introduction 61

4.2 Modelling Recovery Block Based on Aspect-Oriented 61

4.2.1 Recovery Block Design based on Aspect oriented 65

4.3 Summery 73

5 EVALUATION OF THE PROPOSED MODEL 74

5.1 Introduction 74

ix

5.2 Case Study 74

5.2.1 Sort program with Recovery Block by Object Oriented 75

5.2.2 Sort program with Recovery Block by Aspect Oriented76

5.2.3 Evaluation 78

5.3 The Result 82

5.4 Summary 83

6 CONCLUSION 84

6.1 Introduction 84

6.2 Achievement of the Research Objectives 84

6.3 The characteristics of the research innovations 86

6.4 Constraints 86

6.5 Conclusions 87

6.6 Future works 88

7 REFERENCES 89

8 APPENDIX 93

x

TABLE OF TABLES

TABLE NO. TITLE PAGE

2.1 Product of Fault Tolerance General Scenario 17

2.2 Comparison Between Fault tolerance Techniques 36

3.1 Research Activity 57

5.1 Comparison Metrics in Object Oriented and Aspect Oriented 82

xi

TABLE OF FIGURES

FIGURE NO. TITLE PAGE

1.1 The aspect model (Herrero, Sánchez, 2001) 3

1.2 Fault tolerance framework (Afonso and Silva, 2008) 4

1.3 Fault Management of Design Pattern Base on Aspect Oriented 5

2.1 Dependability Tree(Avizienis and Laprie, 2004) 10

2.2 Relationship between Dependability and Security. 13

2.3 Relationship between Fault, Error and Failure 13

2.4 Single-version fault tolerance techniques (Pullum 2001) 20

2.5 Multiple-version fault tolerance techniques (Pullum, 2001) 22

2.6 Recover Blocks Model (Dubrova, 2008) 23

2.7 Structure and Operation of the recovery block 24

2.8 Pseudo code related to Recovery Block 25

2.9 N-Version Programming technique 25

2.10 Structure and Operation of the N-Version Programming 26

2.11 Pseudo code related to the N-Version Programming 26

2.12 Distributed Recovery Blocks Operation 27

2.13 Pseudo code related to the Distributed Recovery Blocks 28

2.14 N-Self-Checking Programming with Acceptance Test 29

2.15 N-Self-Checking Programming with Comparison Process 29

2.16 Pseudo code related to the N-Self Checking Programming 30

xii

2.17 Structure and Operation of N-Self Checking Programming 31

2.18 Structure and Performance of Consensus Recovery Blocks 32

2.19 Pseudo code related to the Consensus Recovery Blocks 33

2.20 Structure and Performance of the Acceptance Voting 34

2.21 Pseudo code related to the Acceptance Voting 35

2.22 Structure of aspect oriented 40

2.23 Combine the main C++ code and aspect code 44

2.24 One example in Aspect C++ 45

2.25 Fault tolerance as aspect 46

2.26 Aspect code of time redundancy technique 47

2.27 Aspect-Oriented architecture model 50

2.28 Replication as aspect 51

2.29 Fault Management of Design Base on Aspect Oriented 52

2.29 Fault-tolerant framework 53

3.1 Research Framwork 58

3.2 The process of combine the main C++ code and aspect code 59

4.1 Model of Recovery Block without Aspect 62

4.2 Model of Recovery Block with Aspect 63

4.3 product fault tolerance base on aspect-oriented 64

4.4 Design Patterns of aspect-oriented 64

4.5 The model of recovery block base on aspect oriented 67

4.6 point cut code 68

4.7 Advice code 68

4.8 Sequence diagram for the first scenario 69

4.9 Sequence diagram for the second scenario 70

xiii

4.10 Sequence diagram for the third scenario 71

5.1 Class diagram with Recovery Block by Object Oriented 76

5.2 Class diagram with Recovery Block by Aspect Oriented 77

5.3 advice code in RBSort 77

5.4 Comparison of Separation of Concern Metrics (CDC) 78

5.5 Comparison of Separation of Concern Metrics (CDO) 79

5.6 The result of Comparison of Coupling Metrics (CBC) 80

5.7 The result of Comparison of Coupling Metrics (DIT) 80

5.8 The result of Comparison of Size Metrics (VS) 81

5.9 The result of Comparison of Size Metrics (NOV) 81

xiv

LIST OF ABBREVIATIONS

AO - Aspect Oriented

OO - Object Oriented

CBC - Coupling between Components

DIT - Depth of Inheritance

VS - Vocabulary Size

NOA - Number of Attributes

CDC - Concern Diffusion over Components

CDO - Concern Diffusion over Operations

xv

LIST OF APPENDICES

APPENDIX TITLE PAGE

A Research Plane 94

CHAPTER 1

1 INTRODUCTION

1.1 Introduction

In the safety-critical systems modifications and changes are very important

and are time-consuming because of the various tests and validation tasks that should

be performed after each change. Fault-tolerance is one of the most known methods

for designing safety-critical systems. Reality, fault tolerance is the ability of a system

to continue performing its intended function despite faults. Fault tolerance is used in

the designing of systems with high reliability. Fault tolerance usually is achieved by

diversity and redundancy mechanisms. The fault tolerance is a non-functional

requirement that usually adds high complexity in the design of safety-critical system

when is implemented based on an approaches such as object oriented, because of

cross-cutting concerns. Crosscutting concerns consist in software system features

having the implementation spread across modules as tangled and scattered code. In

many cases, these crosscutting concerns represent design model, invocations to

model features. When a design model evolves, this can cause the addition or the

change of scattered and tangled code, which contributes to the evolution of the

crosscutting concern. A concern is scattered if it is related to multiple target

elements, and tangled if both it and at least one other concern are related to the same

target element. A crosscutting concern is a concern that is scattered.

2

1.2 Background of the Problem

Recently, the use of aspect-oriented programming in the field of fault

tolerance has become one of the research topics. Fabry (1998) used aspect-oriented

programming to define a "replication" aspect in order to improve the reusability and

greater transparency of replication in the distributed environment. Also Szentiványi

and Nadjm-Tehrani (2004) used aspect-oriented programming to improve

performance and maintainability of fault-tolerant servers built with middleware

support and migrate some operations of FT-CORBA middleware into application

level. In this research, an existing FT-CORBA platform was used and performed

some modifications was performed to support the aspect-oriented application

extensions. Szentiványi and Nadjm-Tehrani’s (2004) results showed that aspect-

oriented programming can be used to implement non-functional requirements

specially for availability and reliability. This two quality attribute can be improved

by object replication mechanisms. Herrero and Sánchez (2001) presented a

replication model named JReplica based on aspect-oriented programming. JReplica

can separate characteristics of the replication code from functional behaviours of

objects. Also, it is possible that programmers define new behaviours to determine

fault tolerance requirements. The model presented by Herrero and Sánchez (2001) on

the aspect-oriented architecture includes two levels (Figure 1.1):

 Functional Level: In this level Object functionality is defined and two

new entities (in, out) in order to communicate objects with its aspects

attached to each object.

 Aspect Level: In this level, aspects are defined. Each object can be

associated with one or more aspects.

3

Figure 1.1 The aspect model (Herrero, Sánchez, 2001)

Alexandersson and Öhman (2010) provided one of the best works about the

use of aspect-oriented programming to implement fault-tolerant tactics.

Alexandersson and Öhman (2010) have been defined a set of fault-tolerant

mechanisms which include: recovery cash, time redundant, recovery blocks, runtime

checks and control flow checking. Also each one of these mechanisms is surveyed

and implemented by AspectC++ language and analyzes recovery blocks mechanism

for a specific case study. Alexandersson and Öhman (2010) noticed that time

redundant, runtime checks and control flow checking mechanisms can be

implemented well in an aspect-oriented programming language.

Afonso and Silva (2008) provided a fault tolerance approach for application

programmers of real-time embedded systems in the operating system core by aspect-

oriented. Afonso and Silva (2008) introduced a fault tolerance framework and then

used it as aspect and implemented using aspect-oriented programming. Figure 1.2

shows the framework.

4

Figure 1.2 Fault tolerance framework (Afonso and Silva, 2008)

A few researches have focused on introducing and implemented aspect-

oriented programming patterns. Hameed and Williams (2010) provided a design

pattern on the base of aspect-oriented for error detection. Also Chavez (2004) and,

Castor Filho and Garcia (2007) introduced an Error handling pattern to manage

exceptions (Figure 1.3).

5

Figure 1.3 Fault tolerance of Design Pattern Base on Aspect Oriented (Hameed and Williams, 2010)

1.3 Problem Statement

Fault tolerance is used in the designing of systems with high reliability. Fault

tolerance usually is achieved by diversity and redundancy mechanisms. The fault

tolerance is a non-functional requirement that usually adds high complexity in the

design of safety-critical system when implemented based on an approach such as

object oriented, because of cross-cutting concerns. Cross-cutting usually includes

two problems: tangling and scattering. Tangling is a component implementation with

more than one requirement and scattering is the one with one requirement.

6

In this research we believe that aspect-oriented design reduces the complexity

and also improves the performance of safety-critical systems because Object oriented

approach focuses on the improvement of the code and programming

(implementation) while aspect oriented one focuses on the concerns. In this research,

the accuracy of the solution and response to improve fault tolerance are evaluated

and also it is focused on the reduction of the complexity and improvement of the

performance of fault tolerant design by aspect-oriented approach.

1.4 Goal

The main goal of the research is to improve the fault tolerant techniques by

using aspect-oriented design in order to reduce the complexity and improving the

performance of safety-critical systems.

1.5 Objectives

 To investigate and select techniques of the fault tolerance design.

 To propose fault tolerance model using aspect-oriented concept.

 To evaluate performance and complexity of fault tolerant design by

the proposed model.

1.6 Scope

In addition to fault tolerance, there are other method to achieve the high

dependability and high reliability that are beyond the scope of this study. Also, fault

tolerant design can be implemented in hardware or software and/or different levels of

software such as the operating system, middleware and application level. In this

study, the scope is application level of fault tolerance will be used and using

AspectC++.

7

In this section, the scope of the research is given based on each objective as

below:

To investigate and select techniques of the fault tolerance design: In the first

objective, it is crucial to have a solid understanding on the concepts of fault tolerance

techniques such as Recover blocks, N-Version programming, Distributed recovery

blocks, N-self checking programming, Consensus recovery blocks and Acceptance

voting, and then select better technique. According to some concepts in Literature

Review is selected recovery block because of this technique is the main technique.

To propose fault tolerance model using aspect-oriented concept: Based on the

investigation to achieve the first objective, the model based on aspect oriented design is

proposed in order to, reduce complexity and improve performance.

To evaluate performance and complexity of fault tolerant design by the

proposed model: Based on the investigation to achieve the second objective, it is crucial

to have a solid understanding on the some metrics such as, separation of concern

metric, coupling metrics and size programme metrics. And use these metrics for

compare between object oriented model and aspect oriented model.

1.7 Deliverables

Each phase in the research has contributed to the deliverable documents as

below where these reports are provided in the future chapters in this thesis:

 Concepts and techniques report (Chapter 2)

 Proposed models report (Chapter 4)

 Proposed models evaluation report (Chapter5)

 Conclusion (Chapter6)

8

1.8 Summary

In this chapter the problem was stated and, solutions and objectives were

proposed. In this research it is believed that aspect-oriented design reduces the

complexity and also improves the performance of safety-critical systems because

Object oriented approach focuses on the improvement of the code and programming

(implementation) while aspect oriented approach focuses on the concerns. This

research, evaluates the accuracy of the solution and response to the improvement of

fault tolerance also focuses on the reduction the complexity and improving the

performance of fault tolerant design by aspect-oriented approach. Crosscutting

concerns consist in software system features having the implementation spread

across modules as tangled and scattered code. In many cases, these crosscutting

concerns represent design model, invocations to model features. When a design

model evolves, this can cause the addition or the change of scattered and tangled

code, which contributes to the evolution of the crosscutting concern.

7 REFERENCES

Laprie, A., and Randell, J.C., and Landwehr Avizienis, B. (2004, March). "Basic

dddConcepts and Taxonomy of Dependable and Secure Computing," IEEE

dddTransactions on Dependable and Secure Computing, vol. 1, no. 1, pp. 11-33.

Harper, J.H., and Lala, R.E.(1994). "Architectural principles for safety-critical real-

dddtime," in Proceedings of the IEEE, 82 (1), pp. 25-40.

Storey, N. (1996). “Safety Critical Computer Systems: Addison-Wesley Longman”.

Sanchez, J.L., and Toro, F., and Herrero, M. (2001)."Fault tolerance as an aspect

dddusing JReplica," in Proceedings of the Eighth IEEE Workshop on Future trends

dddof Distributed Computing Systems, Los Alamitos, pp. 201–207.

Lohmann, O., and Spinczyk, D. (2007). "The design and implementation of

dddAspectC++," in Knowledge Based Systems, pp. 636-651.

Fabry, J., (1998). "A Framework for Replication of Objects using Aspect-Oriented

dddProgramming, " Phd Thesis, University of Brussel.

Nadjm-Tehrani, D., and Szentivanyi, S. (2004). "Aspects for improvement of

dddperformance in faulttolerant software," in Proceedings of the 10th IEEE Pacific

dddRim International Symposiumon Dependable Computing, pp. 283–291.

Alexandersson, R. (2007). "Implementing Fault Tolerance Using Aspect Oriented

dddProgramming," Springer, pp. LNCS 4746, pp. 57–74.

Alexandersson, R. (2010). "Aspect-Oriented Implementation of Fault Tolerance: An

dddAssessment Assessment of Overhead," Springer, SAFECOMP, no. LNCS 6351,

dddpp. 466–479.

Alexandersson, R. (2010)."On Hardware Resource Consumption for Aspect-Oriented

dddImplementation of Fault Tolerance," in European Dependable Computing

dddConference.

90

Afonso, F. and Silva. C. (2008). “Aspect-oriented fault tolerance for real-time

dddembedded systems,” in Proceedings of the 2008 AOSD workshop on Aspects,

dddcomponents, and patterns for infrastructure software, ACM.

Avizienis, A. (1995). "The methodology of n-version programming," Software fault

dddtolerance 3: 23-46.

Avizienis, A. and Laprie, J.-C. (2004). "Basic concepts and taxonomy of dependable

dddand secure computing." in Dependable and Secure Computing, IEEE

dddTransactions on 1(1): 11-33.

Bass, L. and Clements, P. (2003). “Software architecture in practice,” in Addison-

dddWesley Professional.

Briere, D. and Traverse, P. (1993). “AIRBUS A320/A330/A340 electrical flight

dddcontrols-a family of fault-tolerant systems,” in Fault-Tolerant Computing, 1993.

dddFTCS-23. Digest of Papers., The Twenty-Third International Symposium on,

dddIEEE.

Castor Filho, F. and Garcia, A. (2007). “Error handling as an aspect,” Proceedings

dddof the 2nd workshop on Best practices in applying aspect-oriented software

ddddevelopment.

Chavez, C. (2004). "A Model-Driven Approach for Aspect-Oriented Design."

Chen, L. and Avizienis, A. (1978). “N-version programming: A fault-tolerance

dddapproach to reliability of software operation,” in Proc. 8th IEEE Int. Symp. on

dddFault-Tolerant Computing (FTCS-8).

Dijkstra, E. (1982). “A Personal Perspective. On the role of scientific thought.

dddSelected Writings on Computing,” Springer-Verlag.

Dubrova, E. (2008). "Fault tolerant design: An introduction," Department of

dddMicroelectronics and Information Technology, Royal Institute of Technology,

dddStockholm, Sweden.

Florio, D. (2009). "Application-layer fault-tolerance protocols,"

Florio, V. D. and Blondia, C. (2008). "A survey of linguistic structures for

dddapplication-level fault tolerance," ACM Computing Surveys (CSUR) 40(2): 6.

91

Hameed, K. and Williams, R. (2010). "Software Fault Tolerance: An Aspect

dddOriented Approach." Electronic Engineering and Computing Technology: 153-

ddd164.

Herrero, J. L. and Sánchez, F. (2001). “Fault tolerance as an aspect using JReplica,”

dddDistributed Computing Systems, 2001. FTDCS 2001. Proceedings. The Eighth

dddIEEE Workshop on Future Trends of, IEEE.

Horning, J., Lauer, H. (1974). "A program structure for error detection and

dddrecovery," Operating Systems: 171-187.

Kim, K. (1995). "The distributed recovery block scheme," Software fault tolerance 3:

ddd189-210.

Kim, K. and Welch, H. O. (1989). "Distributed execution of recovery blocks: An

dddapproach for uniform treatment of hardware and software faults in real-time

dddapplications," Computers, IEEE Transactions on 38(5): 626-636.

Kulkarni, S. and Arora, A. (2000). ”Automating the addition of fault-tolerance.

dddFormal Techniques in Real-Time and Fault-Tolerant Systems,” Springer.

Lala, J. H. and Harper, R. E. (1994). "Architectural principles for safety-critical real-

dddtime applications," Proceedings of the IEEE 82(1): 25-40.

Pawlak, R., Seinturier, L. (2005). “Foundations of AOP for J2EE Development,”

dddApress.

Pullum, L. L. (2001). “Software fault tolerance techniques and implementation,”

dddArtech House Publishers.

Siemwiorek, D. (1991). "Architecture of fault-tolerant computers: An historical

dddperspective," Proceedings of the IEEE 79(12): 1710-1734.

Spinczyk, O. and Lohmann, D. (2005). "Advances in AOP with AspectC++," New

dddTrends in Software Methodologies, Tools and Techniques (SoMeT’05)(129): 33-

ddd53.

Tarr, P., Ossher, H. (1999). “N degrees of separation: multi-dimensional

dddseparation of concerns,” in Proceedings of the 21st international conference on

dddSoftware engineering, ACM.

92

Torres-Pomales, W. (2000). "Software fault tolerance: A tutorial," NASA Technical

dddReport, NASA-2000-tm210616.

Traverse, P. (1988). "AIRBUS and ATR system architecture and specification,"

dddSoftware diversity in computerized control systems(A 88-45951 19-61). Vienna

dddand New York, Springer-Verlag, 1988: 95-104.

Wingate, G. A. and Preece, C. (1993). “A software-implemented fault-tolerant

dddtechnique for microprocessor controllers,” Reliability and Maintainability

dddSymposium, 1993. Proceedings., Annual, IEEE.

Xu, J. and Randell, B. (2002). “A generic approach to structuring and implementing

dddcomplex fault-tolerant software,” Object-Oriented Real-Time Distributed

dddComputing, 2002.(ISORC 2002). Proceedings. Fifth IEEE International

dddSymposium on, IEEE.

Xu, J. and Randell, B. (1994). “Toward an object-oriented approach to software

dddfault tolerance,” Fault-Tolerant Parallel and Distributed Systems, 1994.,

dddProceedings of IEEE Workshop on, IEEE.

