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ABSTRACT 

The aim of this study was to investigate the influence of interface 

delamination on the elastic properties of fiber reinforced composite materials. 

Transverse Young’s modulus in the presence of different levels of localized and 

homogeneously distributed interface damage in two structures with 0.3 and 0.6 fiber 

volume fractions were simulated in a commercial finite element code. To achieve 

this, a new approach to simulate interface damage was addressed by selective 

merging of fiber and matrix nodes at the fiber-matrix interface. It was found that 

elastic properties were decreased by increasing interface delamination for both 0.3 

and 0.6 fiber volume fractions. In addition, the 0.6 fiber volume fraction model 

showed higher elastic properties, but lower when the interface damage was increased 

to more than 45% due to the higher fraction of damaged fiber. Furthermore, localized 

damage results in slightly higher stiffness values than homogeneously distributed 

damage  
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ABSTRAK 

Tujuan kajian ini ialah untuk menyiasat pengaruh pelekangan antara muka 

pada sifat kekenyalan bahan-bahan komposit yang diteguhkan serat. Modulus Young 

melintang di  pelbagai tahap kehadiran setempat dan keseragaman taburan kerosakan 

antara muka di dua struktur iaitu 0.3 dan 0.6 pecahan serat isipadu disimulasikan 

dalam satu elemen komersial kod yang terhad. Untuk mencapai ini, satu pendekatan 

baru untuk mensimulasikan kerosakan antara muka dikemukakan dengan kaedah 

percantuman terpilih nodus serat dan matriks di antara muka matriks serat .Di dapati 

bahawa sifat-sifat kenyal telah turun apabila  antara muka  bertambah pelekangan 

untuk kedua-dua 0.3 dan 0.6 pecahan isipadu serat. Dalam pada itu, model  pecahan 

isipadu serat 0.6 menunjukkan sifat-sifat kenyal adalah lebih tinggi, tetapi lebih 

rendah apabila kerosakan antara muka telah dinaikkan kepada lebih 45% yang 

disebabkan pecahan serat rosak adalah lebih tinggi . Tambahan pula, kerosakan 

setempat mengakibatkan nilai ketegaran adalah lebih tinggi sedikit daripada  

mengedarkan kerosakan seragam. 
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INTRODUCTION 

1.1 Project Background  

Composite materials are multiphase materials obtained through the artificial 

combination of different materials in order to attain properties that the individual 

components by themselves cannot attain. They are not multiphase materials in which 

the different phases are formed naturally by reactions, phase transformations, or 

other phenomena. An example is carbon fiber reinforced polymer. Composite 

materials can be tailored for various properties by appropriately choosing their 

components, their proportions, their distributions, their morphologies, their degrees 

of crystallinity, their crystallographic textures, as well as the structure and 

composition of the interface between components. (Campbell, 2010) 

 

The physical behavior of composite materials is quite different from that of 

most common engineering materials that are homogeneous and isotropic. For 

instance, metals generally have similar composition regardless of where or in what 

orientation a sample is taken. In contrast, the makeup and physical properties of 

composites vary with location and orientation of the principal axes (R. M. Jones, 

1999). An example of a composite material is a lightweight structural composite that 

is obtained by embedding continuous carbon fibers in one or more orientations in a 

polymer matrix. The fibers provide the strength and stiffness, while the polymer 

serves as the binder. 
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Composite materials are finding applications in a growing variety of primary 

and secondary structural roles in the aircraft, aerospace, and automotive industries 

due to their advantageous low density (lower than aluminum), high strength (as 

strong as high-strength steels), high stiffness (stiffer than titanium, yet much lower in 

density), good fatigue resistance, good creep resistance, low friction coefficient and 

good wear resistance, toughness and damage tolerance (as enabled by using 

appropriate fiber orientations), and chemical resistance (chemical resistance 

controlled by the polymer matrix). However, composite laminates are particularly 

susceptible to impact damage and dramatic strength reductions can occur even in the 

presence of barely visible impact damage (Abrate, 1991; R. Jones, Paul, Tay, and 

Williams, 1988; Richardson and Wisheart, 1996). In particular, the damage caused 

by high-velocity impact is not a big problem, in terms of detection, because it can 

easily be observed by visual inspection and then promptly repaired. However, the 

same is not true for the low-velocity impacts. In this case, small amounts of energy 

can be absorbed through localized damage mechanisms without extensive plastic 

deformation. (Jeon, Lee, Kim, and Huh, 1999) 

 

The impact loading can cause extensive delaminations and matrix cracking 

within the laminates that may not be visible on the surface. For example, impact 

damage is considered the primary cause of in-service delamination in composites 

giving reductions in the compressive residual strength up to 60% (Adams and Cawly, 

1989). As the result, transverse impact resistance is particularly low due to the lack 

of through-thickness, reinforcement with interlaminar stresses - shear and tension - 

often the stresses which cause first failure due to the correspondingly low 

interlaminar strengths. Delamination is therefore a very important mode of impact 

damage. (Garg, 1988) 

 

Interlaminar stress in composite structures usually results from the mismatch 

of engineering properties between plies. These stresses are the underlying cause of 

delamination initiation and propagation. Hence, delamination is defined as the 

cracking of the matrix between plies. The aforementioned stresses are out-of-plane 
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and occur at structural discontinuities. In cases where the primary loading is in-plane, 

stress gradients can produce an out-of-plane load scenario because the local structure 

may be discontinuous. (Reinhart and Clements, 2001) 

 

During the production of composite materials sub-critical damage may occur 

due to handling issues, dropped tools etc. This damage can go undetected, and when 

the structure undergoes the normal loading conditions it is subjected to in the field, 

the sub-critical damage may develop into interlaminar delamination which will 

eventually result in catastrophic failure of the structure (Culliton, 2009). Finite 

element (FE) based analysis is often used to assess whether a given flaw, or 

delamination, or element debonding, will grow. (Ankersen and Davies, 2009) 

1.2 Problem Statement 

Although carbon fiber reinforcement polymer (CFRP) composites are used in 

high performance industries due to their superior mechanical properties, interface 

delamination occurs at the fiber/matrix interface limits their applications and can 

result in catastrophic failure. In this study, the effect of interface delamination on the 

elastic properties of carbon fiber reinforcement epoxy is determined by employing 

FE methods. 

1.3 Objective of the Research 

There are three objectives of the study: 

 Accurate modeling of fiber and matrix. 

 Subjecting validated models to different sizes of interface 

delamination. 
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 Determination of elastic modulus in the presence of different sizes of 

interface delamination. 

1.4 Scope of Study 

The scopes of the study are as the following: 

 Generate models with different interface delamination sizes. 

 FEM analysis of 3D models carries out to explore elastic properties of 

CFRP composites. 

 Fiber of carbon and matrix of epoxy apply as representative materials. 

 MSC.Marc commercial code and Microsoft Excel 2010 is used. 
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