
 

 

 

BUCKLING ANALYSES OF TRIAXIAL WEAVE FABRIC COMPOSITES 

UNDER THERMAL AND MECHANICAL LOADING 

 

 

 

 

 

 

 

 

 

 

 

 

MUHAMMAD NOR HAFIDZI BIN MAHAT 

 

 

 

 

 

 

 

 

 

 

 

 

UNIVERSITI TEKNOLOGI MALAYSIA 



 

 

 

BUCKLING ANALYSES OF TRIAXIAL WEAVE FABRIC COMPOSITES 

UNDER THERMAL AND MECHANICAL LOADING 

 

 

 

 

 

MUHAMMAD NOR HAFIDZI BIN MAHAT 

 

 

 

 

 

A thesis submitted in fulfilment of the 

requirements for the award of the degree of 

Master of Engineering (Structure and Materials) 

 

 

 

 

 

Faculty of Civil Engineering 

Universiti Teknologi Malaysia 

 

 

 

 

 

JANUARY 2013 



iii 

 

 

 

 

 

 

 

 

 

 

For all the reason HE knows so great.. 



iv 

 

 

 

 

 

ACKNOWLEDGEMENTS 

 

 

 

 

 Bismillahirrahmanirrahim. 

 

First and foremost, I wish to express my outmost gratitude to Dr. Ahmad 

Kueh Beng Hong, supervisor and Dr. Airil Yasreen, co-supervisor for providing me 

an opportunity to carry out this study. They have been amazingly generous by 

sharing their skills, thoughts, and experiences in the topic of my study as well as 

being very understanding and keeping me sane in times of troubles. Also I am 

grateful to the Ministry of Science, Technology and Innovation for the support in 

terms of funding my studies throughout the years. 

 

This work bears an imprint of many people. My appreciation goes to my 

colleagues at Steel Technology Center as well as my friends for valuable and 

insightful discussions, debates and constructive criticisms.  

 

Lastly, I wish to avail myself of this opportunity by giving recognition to my 

loving wife and my beloved parents for their morale support, strength, assistance, 

patience and prayers. I am very fortunate to have astounding individuals around me. 

 

I thank you. 

 



v 

 

 

 

 

 

ABSTRACT 

 

 

 

 

This thesis presents the formulation and numerical computation of the buckling 

behaviour of triaxial weave fabric (TWF) composites subjected to mechanical and thermal 

loads. The formulation was constructed by adopting two types of numerical method, namely the 

finite element method (FEM) and the meshfree (MFree) method, based on the classical plate 

theory. A combination of Lagrange and Hermite interpolation functions was adopted in the 

FEM formulation whereas the Multi-Quadrics radial basis function was employed in the MFree 

formulation. The formulation complexities, high time-consumption and tedious computation 

attributed to previous studies, which considered a variety of modelling techniques for the 

description of the complex tow geometry, were identified as the primary disadvantages, 

preventing them from widespread use. Therefore, simplification of modelling the TWF is vital 

for convenience and practicality. Such simplification was provided from the literature by 

describing the constitutive relation of the TWF using the contemporary 6 × 6 ABD matrix, 

adopting the homogenized and segmentation methods. The former employs the periodic 

boundary condition while the latter considers the volume segment of a unit cell. These material 

expressions were employed in both FEM and MFree methods in order to study the behaviour, 

especially the stability of the TWF composite when subjected to uniaxial compressive 

mechanical and uniform thermal loads, focusing on the cases of all edges clamped and simply 

supported. The source codes for the mechanical buckling and thermal buckling for both FEM 

and MFree were developed in this study. Authentication and verification of the source codes 

were done by making comparison with selected problems from the literature. As aspect ratio 

increases, the TWF plate was found to be less resistant towards mechanical buckling, which 

was in contrast to the thermal buckling behaviour. Overall, good agreement has been found in 

models adopting the homogenized and segmentation methods especially for the plates that were 

fully clamped for both thermal and mechanical bucklings using the FEM and MFree methods. 

The plates with fully clamped edges were identified to have higher resistance towards 

mechanical and thermal loads in comparison with those of simply supported edges. 
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ABSTRAK 

 

 

 

 

 Tesis ini membentangkan perumusan dan pengiraan berangka untuk tingkah laku 

kestabilan komposit fabrik anyaman tiga paksi (TWF) yang dikenakan daya mekanikal dan termal. 

Perumusan telah dihasilkan dengan menggunakan dua kaedah berangka, iaitu kaedah unsur 

terhingga (FEM) dan kaedah tanpa jejaring (MFree) yang berdasarkan teori plat klasik. Gabungan 

interpolasi Lagrange dan Hermite telah diadaptasikan di dalam perumusan FEM manakala fungsi 

Multi-Quadrics radial basis telah digunakan untuk perumusan MFree. Kaedah perumusan yang 

kompleks, tempoh pengiraan yang lama, dan kesukaran pengiraan dengan menggunakan pelbagai 

kaedah untuk memodelkan geometri tow yang kompleks telah dikenalpasti daripada literatur 

sebagai kelemahan utama, yang menyukarkan penyebaran penggunaan secara menyeluruh. Usaha 

pemodelan TWF secara ringkas adalah penting untuk kemudahan dan praktikaliti. Pemudahan 

tersebut telah disediakan dalam literatur dengan menerangkan hubungan konstitutif TWF dalam 

bentuk matrik ABD 6 × 6 yang kotemporari dengan menggunakan kaedah homogenized dan 

kaedah sekmentasi. Kaedah pertama menggunakan keadaan batas berkala manakala yang kedua 

adalah berdasarkan sekmen isipadu bagi satu unit sel. Ekspresi bahan ini telah diterapkan di dalam 

FEM dan MFree untuk kajian kestabilan bahan TWF terhadap daya mampatan searah mekanikal 

dan beban termal yang sekata dengan memfokuskan tumpuan kepada kes semua batas diapit 

sepenuhnya dan disokong mudah sepenuhnya. Kod pengaturcaraan untuk pengiraan kestabilan 

mekanikal dan termal untuk kedua-dua FEM dan MFree telah dibangunkan di dalam kajian ini. 

Pengesahan pengiraan daripada kod pengaturcaraan diuji dengan perbandingan dengan beberapa 

pemasalahan pilihan daripada literatur. Dengan kenaikan nilai nisbah aspek, plat TWF didapati 

memberikan kurang rintangan terhadap kestabilan mekanikal dan ini berbeza dengan tingkah laku 

kestabilan termal. Kesimpulannya, persetujuan dikenal pasti bagi model yang menadaptasikan 

kaedah homogenization dan sekmentasi terutama sekali untuk plat yang diapit sepenuhnya bagi 

kestabilan termal dan mekanikal dengan menggunakan kaedah FEM dan MFree. Plat yang diapit 

penuh didapati memberikan rintangan yang tinggi terhadap beban mekanikal dan termal 

berbanding dengan kes disokong mudah. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Overview 

 

 

Tremendous efforts have been laid down this past decades to seek upon 

suitable material that able to meet the requirements of high structural performance 

for various possible applications. Such applications are not only limited to aerospace 

industry but also to areas such as building industry, defence industry, automobile, 

marine, space exploration and sport. The urge of satisfying such rigor applications 

brings us to the wonders of textile composites. Various attractions that have been 

identified have made the use of textile composite highly potential for practical 

application. One of the primary attractions is the ultra-lightness of the material, 

which has high ranging structural uses including those with both rigid and 

deployable features. Fabric composites are highly suitable for applications like 

reflectors, communication satellites, and structural components in building which 

require low mass and flexible properties. An example of such uses can be seen in 

Figure 1.1, which shows a spacecraft reflectors constructed with triaxial weave fabric 

composite materials. Transparency features is visible as one able to see through the 

material due to the high degree of porosity of the material. Moreover, the reflector is 

able to be folded and deployed due to the high flexibility of the material. 
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Figure 1.1 Spring back reflectors one folded (top) and one deployed (bottom), on 

MSAT-2 spacecraft (Courtesy of Canadian Space Agency) 

 

 

It should be stressed that the application of textile composite is wide ranging 

in all existing engineering areas. Textile composite is considered as thin material and 

such material has the tendency to bend. Hence, the material is susceptible to stability 

failure due to extreme thermo-mechanical environment. Even though textile 

composite is lightweight and has high performance, exposure of the thin material to 

mechanical load and environmental heat under extreme condition may lead to 

possible eventual structural failure. Therefore, study on this issue would greatly help 

in analysis and design as such stability precaution can be exercised to prevent 

catastrophic failure. 

 

In practice, there exist several compositions and dimensions of textile 

composite. In the present study, textile composite with triaxial woven formation is 

considered. The main focus of this research project is on the buckling of triaxial 

weave fabric (TWF) composites due to an independently prescribed uniaxial 

mechanical load and uniform thermal load, studied using Finite Element Method 

(FEM) and Mesh Free method (MFree) and emphasizing on plate problem. Basically, 

TWF consists of two constituents, the fibers and the matrix, that make up the tows 

and are arranged along three axes on a plane, at 0º and ±60º, and woven in a fabric 
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form (Figure 1.2).  TWF is impregnated with resin and cured in an autoclave, like a 

standard composite. Even though the arrangements are profoundly aesthetic or 

decorative in the eyes of human, the technical performance and functional properties 

of the woven arrangement should not be neglected. 

 

 

 

Figure 1.2 TWF composite structure (Xu et al, 2005) 

 

 

Such unique arrangement of tows gives a significant advantage comparable 

with biaxial arrangement. The weave produced from triaxial weave are structurally 

superior to most conventional, biaxially woven types. This includes high strength, 

stiffness coupled with low weight and considerably less density. The main factor in 

contributing to the mass reduction of the composite is due to existence of hexagonal 

voids that are well distributed over the surface area. The arrangement of the woven 

tows results in a better resistance to in-plane shear loads compared with other woven 

arrangement especially biaxial weaves (Kueh et al, 2005). Furthermore, fracture 

toughness as well as poor inter laminar strength encountered by unidirectional (UD) 

material can be addressed substantially by TWF since all textile composites offer 

interlocking mechanism between tows attributed to their interwoven nature. 
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1.2 Problem Statement 

 

 

Fiber composites are known these past few years as one of the best potential 

material that can help human to construct an advanced deployable and lightweight 

structure. Even though these composites are known to other develop countries for a 

quite a while now, it is still relatively new to Malaysian industries. By looking at this 

scenario, it will be a good opportunity for us to explore and apply the material into 

any engineering discipline especially in civil engineering. Although it is lightweight 

and has high performance, the stability of the material as a structural element is of 

high concern in a heat environment. In attempt to better utilize this material, its full 

behavior for design application needs to be discovered. Of particular interest would 

be the behaviors of material when exposed to different types of uniaxial mechanical 

and thermal loads focusing on the buckling due to compressive stresses. 

 

 MFree method can be considered as at its infancy and currently more 

research has to be done to improve and develop this promising method. High 

computational cost which is common in creating FEM meshes has led to the concept 

of MFree methods. The dependency of using elements or mesh in the formulation 

stages by FEM especially during convergence study remain as one of the most 

hassled procedures in applications. Hence, in depth investigation on MFree has to be 

done to pave more opportunity to apply this method thoroughly for future 

application. 

 

Thus far, previous studies on textile composite have successfully modeled the 

complexity of the weave geometry. However, the complexity of computation has 

inhibited the widespread use in particular among practicing engineers. This can be 

seen in the proposed solid modeling techniques (Zhao and Hoa, 2004; Zhao et al, 

2003; Xu et al, 2004) which require long formulation and computational analyses. 

The disadvantages of hassled computation are seen as weakness and the needs to 

simplify the solution is by representing the mechanical properties of composite 

material to a lower structural order, preferably in terms of what commonly known as 

ABD stiffness matrix especially for plate-like structures. In the current study, the 

material expressions are taken from Kueh and Pellegrino (2007) and Kueh (2012). 
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Both sources pioneered the simplified approach for computation of ABD stiffness 

matrix of TWF using homogenization and segmentation methods, respectively. Both 

constitutive have its unique differences and the computational features of both are of 

interest to be explored using FEM and MFree methods. It is the aim of this research 

to continue investigating the stability of this highly potential material and reliability 

of both FEM and MFree numerical methods for plate problem in structural 

applications. 

 

 

 

 

1.3 Objectives of the Study 

 

 

The primary objectives of this study are summarized as follows: 

 

1. To formulate the finite element and meshless models for TWF adopting 

composite plate approach. 

2. To study the size effects of TWF on thermal and mechanical loaded 

stabilities. 

3. To recognize the effects of various geometrical boundary conditions in 

addition to force boundary conditions. 

 

 

 

 

1.4 Scope of Study 

 

 

The chief concern of the study is centered on the buckling of a single ply 

TWF composite due to uniaxial mechanical and thermal loads. Thermal load 

prescribed on the structure is uniformly distributed throughout the volume. Note that 

post buckling is not considered in this study. The materials used are T300 carbon 

fibers and Hexcel 8552 epoxy resin. The material inelasticity is not taken into 



6 

 

account in the numerical solution. The material is assumed to be fully cured and no 

imperfection is applied. 

 

Classical plate theory (CPT) provided by Reddy (2004) will be adopted in the 

formulation due to ultra-thin feature of single-ply TWF, 0.156 mm in average, which 

is suitably defined as thin plate. Non-conforming shape functions will be used for 

FEM which comprises 20 degrees of freedom in total. Also, the radial point 

interpolation method (RPIM) with the multi-quadrics (MQ) radial basis function 

(RBF) are to be used for the function approximation for describing the MFree shape 

functions. Two types of boundary conditions, simply supported and fully clamped, 

are considered. 

 

 

 

 

1.5 Significance of Research 

 

 

This study concerns with thermo-mechanical behavior of TWF composite 

stability subjected to mechanical and thermal loads. As far as the scope of the 

research is concerned, the significance of this study would be on the application of 

simplified computational materials expressions proposed by Kueh and Pellegrino 

(2007) and Kueh (2012), which are homogenized and segmentation method, 

respectively. Although other solid element modeling techniques have been 

previously employed for the material, complex formulation and computation are 

considered as drawbacks that hinder the efficiency of the solution process. 

Application of the material on MFree is seen as another effort in studying the 

reliability of MFree although applications in other fields have shown some promising 

results. With the approach used in this study, it is hoped that the understanding on the 

buckling of TWF composites when subjected to mechanical and thermal loads can be 

obtained. Effects such as changes of dimensional aspect ratios and boundary 

condition can be used for practical purposes in design and analysis of TWF. In 

addition, this study will provide a platform for other researcher to venture into more 
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extensive behavior of TWF in the scope of homogenized and segmentation material 

expressions. 

 

 

 

 

1.6 Chapter Organization 

 

 

This thesis comprises six chapters. Subsequently after the first introductory chapter, 

Chapter 2 discusses various studies of TWF in literature. Review of existing model 

will be given thoroughly, including the details on simplified homogenized and 

segmentation methods to obtain the ABD matrix of TWF. Basic introduction 

regarding MFree method that is used in the present problem solution will also be 

explained, specifically on weak forms with main highlight on radial point 

interpolation method (RPIM). 

 

Chapter 3 is divided into two sections emphasizing on formulation of FEM and 

MFree, respectively. The discussion of FEM formulation begins from the equation of 

motions to the development of its weak forms and finally the stiffness matrix. 

Similar approaches are applied for formulation of MFree.  

 

Chapter 4 is dedicated for explanation of the MATLAB program for both FEM and 

MFree that have been developed. Validation of linear deflection as well as 

mechanical buckling and thermal buckling will also be demonstrated in this chapter. 

 

Chapter 5 is devoted to the discussion of results obtained by the verified models in 

Chapter 4. Necessary comparison of FEM and MFree with homogenized and 

segmentation constitutive relations on the thermo-mechanical buckling problems is 

discussed thoroughly. 

 

Chapter 6 ends the thesis with the conclusions on the behavior of linear mechanical 

and thermal buckling of TWF that has been studied with both homogenized and 

segmentation constitutive relations, respectively. The efficiency and reliability of 
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MFree are given with respect to comparison with FEM. The chapter is followed by a 

list of recommendations for future study. 
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