# DATA MANAGEMENT MATURITY MODEL (DM<sup>3</sup>) FOR AN EXPLORATION AND PRODUCTION COMPANY

NURAZLAN ISKANDAR B CHE HUSSIN @ ZAKARIA

UNIVERSITI TEKNOLOGI MALAYSIA

# UNIVERSITI TEKNOLOGI MALAYSIA POZ 19:16 (Pind. 1/07)

| DECLARATION OF THESIS                                                                                                                | / UNDERGRADUATE PROJECT PAPER AND COPYRIGHT                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NUR                                                                                                                                  | AZLAN ISKANDAR B CHE HUSSIN @ ZAKARIA                                                                                                                                |
| Author's toll name :                                                                                                                 | GUST 15TH. 1975                                                                                                                                                      |
| Tate DAT                                                                                                                             | A MANAGEMENT MATURITY MODEL (DM3) FOR                                                                                                                                |
| ANE                                                                                                                                  | XPLORATION AND PRODUCTION COMPANY                                                                                                                                    |
| 2010                                                                                                                                 | )/2011                                                                                                                                                               |
| I declare that this thesis is cla                                                                                                    | ssified as :                                                                                                                                                         |
| CONFIDENTIAL                                                                                                                         | (Contains confidential information under the Official Secret<br>Act 1972)*                                                                                           |
| RESTRICTED                                                                                                                           | (Contains restricted information as specified by the<br>organization where research was done)*                                                                       |
| OPEN ACCESS                                                                                                                          | I agree that my thesis to be published as online open access (full text)                                                                                             |
| I acknowledged that Univers                                                                                                          | iti Teknologi Malaysia reserves the right as follows:                                                                                                                |
| <ol> <li>The thesis is the prope</li> <li>The Library of Universit<br/>of research only.</li> <li>The Library has the rig</li> </ol> | rty of Universiti Teknologi Malaysia.<br>i Teknologi Malaysia has the right to make copies for the purpose<br>ht to make copies of the thesis for academic exchange. |
|                                                                                                                                      | Certified by :                                                                                                                                                       |
| SIGNATURE                                                                                                                            | SIGNATURE OF SUPERVISOR                                                                                                                                              |
| 750815-03-5772                                                                                                                       | 7 HASUNA SARKAN                                                                                                                                                      |
| (NEW IC NO. /PASSPOR                                                                                                                 | T NO.) NAME OF SUPERVISOR                                                                                                                                            |
| Date :                                                                                                                               | Date :                                                                                                                                                               |

"I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of the degree of Master of Software Engineering "

| Signature          | : |                |
|--------------------|---|----------------|
| Name of Supervisor | : | Haslina Sarkan |
| Date               | : |                |

## DATA MANAGEMENT MATURITY MODEL (DM<sup>3</sup>) FOR AN EXPLORATION AND PRODUCTION COMPANY

## NURAZLAN ISKANDAR B CHE HUSSIN @ ZAKARIA

A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Software Engineering

> Advanced Informatics School Universiti Teknologi Malaysia

> > JANUARY 2012

ii

I declare that this thesis entitled "Data Management Maturity Model  $(DM^3)$  For An *Exploration And Production Company*" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

| Signature | :                                           |
|-----------|---------------------------------------------|
| Name      | : Nurazlan Iskandar B Che Husssin @ Zakaria |
| Date      | :                                           |

#### ACKNOWLEDGEMENT

This project is very much indebted to all lecturers and colleagues at the Advanced Informatics School (AIS) of Universiti Teknologi Malaysia (UTM) at the Kuala Lumpur International Campus. Their direct and indirect contributions to my study and work on this project had made this task feasible and easier to deal with. Many thanks to the superiors and friends at the work location in the E&P Company who have paved the way for the project to progress albeit busy schedule and tight budget.

Special thanks to Madam Haslina Sarkan from AIS, UTM who is the Academic Mentor for the project, with her guide and inputs that had enriched the work. Special thanks to Dr Suriayati Chuparat, Head of Department for Software Engineering at AIS, UTM for her patience and positive thinking for the success of the students. Special thanks to Prof. Dr. Shamsul Sahibuddin and Dr M Naz'ri Mahrin who had introduced the great topics of Software Process Improvement, CMMI and Software Quality.

Special thanks to my Industry Mentor, Mr Idrus M Shuhud, Senior Manager of Information Management Governance at the E&P Company, for his strong personal support for the project and guided me through to the completion of this work. Special thanks to Mrs. Fariha M Yusoff who participated in the project and assisted the execution of the project.

#### ABSTRACT

The search for hydrocarbon deep in the subsurface depends greatly on the data and information about the subsurface structure. Exploration and Production companies around the globe are investing big to ensure they are at the heading the race to discover new hydrocarbon as the easy oil era has passed and more of unconventional resources emerge. One area of investment is about acquiring geological and geophysical data from the subsurface, managing oil and gas fields' development and production data. Over the years, exploration and productions companies are seeking ways to measure the progress and impact of the investment to the business, while developing and sustaining the capabilities to manage the complex data. A maturity model approach is proposed as a methodology to achieve these objectives of measuring the progress and impact of data management for the exploration and production companies. As such, this project was commissioned to explore the best practices of maturity model and adopt the best fit for purpose model which will help exploration and production companies to measure their progress and impact of data management. It gathered and analyzed available maturity models and recommended the adoption of maturity models which had met the requirement of the project. Then, the established maturity model, referred as Data Management Maturity Model (DM<sup>3</sup>) was tested for an area of the business. The results of the assessment indicated the DM<sup>3</sup> had provided the means to measure the progress and impact of data management to an organization.

#### ABSTRAK

Pencarian hidrokarbon yang mendalam di bawah permukaan bumi banyak bergantung kepada data dan maklumat mengenai struktur sub-permukaan. Syarikatsyarikat berasaskan Eksplorasi dan Pengeluaran di seluruh dunia melabur dalam jumlah yang besar untuk memastikan mereka yang berada di hadapan dalam perlumbaan untuk menemui sumber hidrokarbon yang baru kerana era hidorkarbon yang mudah ditemui telah berlalu dan timbulnya sumber-sumber bukan konvensional sebagai sumber hidrokarbon yang baru. Salah satu pelaburan untuk pencarian hidrokarbon ialah pemerolehan data geologi dan geofizik, serta pengurusan data-data dalam Pembangunan and Pengeluaran di medan-medan minyak dan gas. Sejak kebelakangan ini syarikatsyarikat berasaskan Eksplorasi dan Pengeluaran mencari cara-cara untuk mengukur kemajuan dan hasil pelaburan mereka dalam pengurusan data di samping terus membangunkan dan mengekalkan keupayaan untuk menguruskan data yang kompleks. Kaedah yang dicadangkan untuk mencapai objektif untuk mengukur kemajuan dan kesan pengurusan data untuk syarikat-syarikat berasaskan Eksplorasi dan Pengeluaran ialah "Maturity Model". Oleh itu, projek ini telah ditugaskan untuk meninjau amalan terbaik dalam "Maturity Model" yang sedia ada dan menerima pakai penyuaian model yang terbaik untuk membantu syarikat berasaskan Eksplorasi dan Pengeluaran dalam mengukur kemajuan pengurusan data dan kesan pengurusan data kepada objektif busines mereka. Ia mengumpulkan dan menganalisis "Maturity Model" yang sedia ada dan mencadangkan penggunaan "Maturity Model" yang memenuhi keperluan projek. yang ditubuhkan, yang disebut sebagai "Data Kemudian, "Maturity Model" Management Maturity Model (DM<sup>3</sup>)" telah diuji bagi satu bidang perniagaan. Keputusan penilaian menunjukkan DM<sup>3</sup> telah berjaya menyediakan cara-cara untuk mengukur kemajuan dan kesan pengurusan data kepada organisasi.

## TABLE OF CONTENTS

| CHAPTER |                             | TITLE                                              | PAGE |  |
|---------|-----------------------------|----------------------------------------------------|------|--|
|         | DECLAR                      | ATION                                              | iii  |  |
|         | ACKNOWLEDGEMENT<br>ABSTRACT |                                                    |      |  |
|         |                             |                                                    |      |  |
|         | ABSTRA                      | K                                                  | vi   |  |
|         | TABLE (                     | <b>DF CONTENTS</b>                                 | vii  |  |
|         | LIST OF                     | TABLES                                             | х    |  |
|         | LIST OF                     | FIGURES                                            | xi   |  |
|         | LIST OF                     | ACRONYMS                                           | xii  |  |
|         | LIST OF                     | APPENDICES                                         | xiii |  |
| 1       | PROJEC                      | T OVERVIEW                                         | 1    |  |
|         | 1.1                         | Introduction                                       | 1    |  |
|         | 1.2                         | Company Background                                 | 2    |  |
|         | 1.3                         | Background of the Problem                          | 5    |  |
|         | 1.4                         | Project Objectives                                 | 8    |  |
|         | 1.5                         | Project Scope                                      | 8    |  |
|         | 1.6                         | Importance of the project                          | 9    |  |
|         | 1.7                         | Chapter Summary                                    | 10   |  |
| 2.      | LITERA                      | ΓURE REVIEW                                        | 12   |  |
|         | 2.1                         | Introduction                                       | 12   |  |
|         | 2.2                         | Structure for the Literature Review                | 12   |  |
|         | 2.3                         | Definition of Maturity Model                       | 13   |  |
|         | 2.4                         | Definition of Data Management                      | 14   |  |
|         | 2.5                         | Examples of Maturity Models                        | 14   |  |
|         | 2.6                         | Existing Data Management Maturity Model and Issues | 18   |  |

|   | 2.7           | Selection of Maturity Model for Adoption by DM <sup>3</sup> | 19 |
|---|---------------|-------------------------------------------------------------|----|
|   |               | 2.7.1 ISO/IEC 9126 : Software Engineering - Product Quality | 19 |
|   |               | 2.7.2 ISO/IEC 14598 : Information Technology                |    |
|   |               | - Software Product Evaluation                               | 20 |
|   | 2.8           | Application of Maturity Model in the E&P Company            | 21 |
|   | 2.9           | Chapter Summary                                             | 23 |
| 3 | PROJEC'       | T METHODOLOGY                                               | 24 |
|   | 3.1           | Introduction                                                | 24 |
|   | 3.2           | Project Management Methodology                              | 25 |
|   |               | 3.2.1 Initiating Process Group                              | 26 |
|   |               | 3.2.2 Planning Process Group                                | 27 |
|   |               | 3.2.3 Executing Process Group                               | 29 |
|   |               | 3.2.4 Monitoring and Controlling Process Group              | 32 |
|   |               | 3.2.5 Closing Process Group                                 | 34 |
|   | 3.3           | Project Operation Framework                                 | 35 |
|   |               | 3.3.1 Define Scope of Project                               | 37 |
|   |               | 3.3.2 Identify Project Approach                             | 37 |
|   |               | 3.3.3 Conduct Literature Review                             | 37 |
|   |               | 3.3.4 Evaluation of Models for Adoption                     | 38 |
|   |               | 3.3.5 Selection of Models for Adoption                      | 40 |
|   |               | 3.3.6 Adoption and Tailoring of the Maturity Model          | 47 |
|   |               | 3.3.7 Test the Maturity Model                               | 48 |
|   | 3.4           | Problem Solving Methodology                                 | 49 |
|   |               | 3.4.1 Data Lifecycle                                        | 50 |
|   |               | 3.4.2 Current Challenges in Data Management                 | 51 |
|   |               | 3.4.3 Design of the Maturity Model                          | 52 |
|   |               | 3.4.4 Business Goals Definition                             | 53 |
|   |               | 3.4.5 Recommended Sub-Goals                                 | 54 |
|   | 3.5           | Chapter Summary                                             | 56 |
| 4 | <b>PROJEC</b> | <b>T DISCUSSION</b>                                         | 57 |
|   | 4.1           | Introduction                                                | 57 |
|   | 4.2           | Maturity Levels Definition for DM <sup>3</sup>              | 58 |

| 4.3 Categories of Process Area |                                                        |    |  |
|--------------------------------|--------------------------------------------------------|----|--|
| 4.4                            | 4.4 Definition of Process Areas                        |    |  |
| 4.5                            | Goals and Practices                                    | 66 |  |
| 4.6                            | 4.6 Baseline Assessment                                |    |  |
|                                | 4.6.1 Introduction of the Baseline Assessment          | 74 |  |
|                                | 4.6.2 Objectives of the Baseline Assessment            | 75 |  |
|                                | 4.6.3 Scope of the Assessment                          |    |  |
|                                | 4.6.4 Methodology for the Baseline Assessment          | 76 |  |
|                                | 4.6.5 Procedure for the Baseline Assessment            | 77 |  |
| 4.7                            | Results of the Baseline Assessment                     | 80 |  |
|                                | 4.7.1 Findings from the Assessment                     | 80 |  |
|                                | 4.7.2 Discussion on the Results of the Assessment      | 82 |  |
| 4.8                            | Chapter Summary                                        | 87 |  |
| 5 CONCLU                       | SION                                                   | 88 |  |
| 5.1                            | Key Achievement for DM <sup>3</sup> Project            | 89 |  |
| 5.2                            | Lessons Learned from Software Engineering Perspectives | 90 |  |
| 5.3                            | Good Practices in this Project                         | 91 |  |
| 5.4                            | Opportunities for Improvement                          | 93 |  |
| 5.5                            | Future Work on Data Management Maturity Model          | 94 |  |
| REFERENCES                     | 5                                                      | 95 |  |
| Appendices A - D 98 -          |                                                        |    |  |

## LIST OF TABLES

#### TABLE NO.

#### TITLE

#### PAGE

| 3.1 | List of WBS and deliverables                                 | 28  |
|-----|--------------------------------------------------------------|-----|
| 3.2 | Description of Executing Process Group for DM <sup>3</sup>   | 30  |
| 3.3 | List of Requirement for DM <sup>3</sup>                      | 39  |
| 3.4 | List of Requirement and Criteria                             | 41  |
| 3.5 | Rating System for the Selection Process                      | 43  |
| 3.6 | Results of the Execution Step for Selection Process          | 44  |
| 3.7 | Comparison of the Models                                     | 46  |
| 3.8 | Elements of Other Maturity Models to be Adopted              | 47  |
| 4.1 | Definition of Maturity Levels for DM <sup>3</sup>            | 58  |
| 4.2 | Categories of Process Area                                   | 61  |
| 4.3 | List of Process Areas for DM <sup>3</sup>                    | 64  |
| 4.4 | Specific Goals and Practices for Technology Support          | 67  |
| 4.5 | Steps for Baseline Assessment                                | 77  |
| 4.6 | Gaps Identified and Suggestion of Action Items               | 83  |
| 4.7 | Suggested Action Items to Resolve Data Management Challenges | 85  |
| 5.1 | Good Practices from the Project                              | 92  |
| A1  | Examples of Well Data Types                                  | 98  |
| A2  | Examples of Seismic Data Types                               | 100 |
| D1  | Examples of Questionnaires for Baseline Assessment           | 103 |

## LIST OF FIGURES

#### FIGURE NO.

#### TITLE

#### PAGE

| 1.1        | Value Chain of the National Oil and Gas Company                     | 3   |
|------------|---------------------------------------------------------------------|-----|
| 1.2        | Illustration of Subsurface Structure                                | 5   |
| 1.3        | Illustration of Processes that Generates Data                       | 6   |
| 1.4        | Illustration of Data Accessibility Throughout the "Life of Field"   | 6   |
| 2.1        | Structure of the Literature Review for this Project                 | 13  |
| 2.2        | Example of Data Management Activities                               | 22  |
| 3.1        | Project Management Process Groups                                   | 25  |
| 3.2        | Change Control Process                                              | 33  |
| 3.3        | View of the Tracking Gantt for the DM <sup>3</sup> project          | 33  |
| 3.4        | Project Operation Framework                                         | 36  |
| 3.5        | Selection Process of the Maturity Model                             | 40  |
| 3.6        | Illustration of Adoption of Identified Maturity Models to Establish |     |
|            | the DM <sup>3</sup>                                                 | 47  |
| 3.7        | Overview of Process Model for GQM                                   | 49  |
| 3.8        | Data Lifecycle                                                      | 50  |
| 3.9        | Sub-goals for the DM <sup>3</sup>                                   | 55  |
| 4.1        | Grid Representation of DM <sup>3</sup>                              | 63  |
| 4.2        | CMMI Components Model                                               | 66  |
| 4.3        | Architecture of Application Portfolio                               | 76  |
| 4.4        | List of Process Areas in DM <sup>3</sup>                            | 77  |
| 4.5        | Summary of Findings for Baseline Assessment                         | 82  |
| <b>B</b> 1 | Data Management Maturity Model By D'Angelo and Troy                 | 101 |
| C1         | Scoring Template for Selection Process                              | 102 |

## LIST OF ACRONYMS

| AM     | - | Academic Mentor                                  |
|--------|---|--------------------------------------------------|
| CMMI   | - | Capability Maturity Model Integration            |
| $DM^3$ | - | Data Management Maturity Model                   |
| E&P    | - | Exploration and Production                       |
| ERP    | - | Enterprise Resource Planning                     |
| GQM    | - | Goal, Question, Metric                           |
| IA     | - | Industrial Attachment                            |
| IEC    | - | International Electrotechnical Commission        |
| IEEE   | - | Institute of Electrical and Electronic Engineers |
| IM     | - | Industry Mentor                                  |
| ISO    | - | International Organization for Standardization   |
| IT     | - | Information Technology                           |
| MDM    | - | Meta Data Management                             |
| PMBOK  | - | Project Management Body of Knowledge             |
| PMI    | - | Project Management Institute                     |
| PSC    | - | Production Sharing Contract                      |
| SEI    | - | Software Engineering Institute                   |
| SG     | - | Specific Goal                                    |
| SP     | - | Specific Practice                                |
| SWEBOK | - | Software Engineering Body of Knowledge           |
| VPN    | - | Virtual Private Network                          |
| WBS    | - | Work Breakdown Structure                         |

## LIST OF APPENDICES

| APPENDIX | TITLE                                              | PAGE |
|----------|----------------------------------------------------|------|
| А        | Examples of Data Types                             | 98   |
| В        | D'Angelo And Troy's Data Management Maturity Model | 101  |
| С        | Scoring Template for Selection Process             | 102  |
| D        | Questionairre for Baseline Assessment              | 103  |

#### **CHAPTER 1**

#### **PROJECT OVERVIEW**

#### 1.1 Introduction

In the fight towards discovering new source of hydrocarbon, exploration and production companies are depending greatly on their ability to effectively manage their information resources. This is mainly due to the nature of hydrocarbon reserve which is usually found deep in the subsurface of the earth, especially those which are located in the offshore. The search for hydrocarbon reserve relies heavily on the availability of accurate data from the target area of prospect trap. If there is no relevant data available about the area then exploration and production companies may opt to acquire the data either via data acquisition project or they may purchase the data from another company. This data acquisition usually results in heavy financial commitment, and therefore it is important to measure the impact of the data management to the business. A data management strategy to the business and guide the improvement of the companies towards achieving high maturity in managing its data.

#### 1.2 Company Background

This Exploration & Production Company (herein after referred as "E&P Company") was incorporated in 1978 as a wholly owned subsidiary of a national oil company. The E&P Company was incorporated to increase the country's participation in the exploration and production industry. The E&P Company started with very limited knowledge about the industry but with a strong aspiration. The E&P Company quickly built and acquired its capabilities in this industry and establishing its reputation among the major players in the similar industry. The company was also gaining trust and confidence in the international arena and as a result, the company had expanded its operation into the global arena.

The E&P Company is involved as the main supplier of the hydrocarbon products which are crude oil and gas to the downstream industry like oil refinery, gas processing and liquefaction. These products can be further processed to produce petroleum products, liquid natural gas, petrochemical, fertilizer and cooking gas, to name a few. The E&P Company is the initiator of a value chain for the national oil and gas company as indicated in Figure 1.1 on the next page.



Figure 1.1 : Value Chain of the National Oil and Gas Company

As the initiator of the value chain for the national oil company, it is crucial for the E&P Company to continuously replenish its reserves of hydrocarbon (oil and gas) as the hydrocarbon is continuously being produced and supplied to the downstream industry. This is achieved by ensuring acquisition, exploration, development and production activities of the oil and/or gas fields are continuously running. If there is a discontinuation of activities in a particular oil and/or gas field, the E&P Company will then execute Abandonment activity to clean up the site. Brief descriptions of those activities are as below:

- a. Acquisition Acquire new block of potential hydrocarbon reserve or data for the block with potential hydrocarbon reserve.
- Exploration The search for oil and gas fields using geophysical and geological techniques such as outcrop studies, gravity, magnetic and seismic surveys.

- c. Development Once an exploration activity encounters hydrocarbon, more appraisals are conducted to assess the potential of the find to complete a feasibility study. A Field Development Plan will be drawn up to chart the works required to put the field on production economically. Then, the whole construction of production facility is developed to produce the hydrocarbon.
- d. Production Production activity commences with the "first oil or gas" flowing through the wellhead to the surface, gathering, treating, processing and storage facilities. Production will be ceased when reserve is exhausted or contractual agreement period expires.
- e. Abandonment Abandonment activity will kick in when the time at which income from production no longer exceeds the cost of production. There is a requirement by regulatory body to clean up the production site.

These activities construct the "Life of Field" concept in the exploration and production industry as it reflects the starting and ending of the oil and/or gas field.

In current status of the company, it is building its robust business strategy to further generate value in pursue of growth in the industry and building its competitive advantage. The company is operating in more than 20 countries with expected manpower of more than 8,000 employees globally.

#### **1.3 Background of the Problem**

The E&P company in general is relying heavily on the available data about a potential hydrocarbon reserve before they can make a decision either to continue with their investment or not. The E&P Company may respond quicker to a business decision because of the availability of accurate and reliable data which can remove or reduce the uncertainty about the understanding of subsurface. This is mainly due to the fact that human eyes will not be able to see deep into the subsurface and its structure as illustrated in Figure 1.2.



Figure 1.2 : Illustration of subsurface structure

For example, the E&P Company may explore this area as based on the company's study on available data, it has a potential hydrocarbon reserve. The company may proceed with additional data acquisition if required. The company may have generated an extensive amount of data at this earlier stage of acquisition and exploration as illustrated in Figure 1.3, on the next page, where the final outcome may be the decision to drill at a particular target location. At this stage, the company will be able to get the results of discovery of new oil or gas, or whether it is a dry well i.e. no oil/gas.



Figure 1.3 : Illustration of processes that generates data

Taking this into a bigger perspective of all the activities in the "Life of Field", it is considerably a huge task to manage its data, which exists in many forms, both physically or electronically. In addition, the company may re-visit some historical data in future where development of a field may become more economic, for example, when the price of oil is higher than normal. There is a need for the company to maintain the accessibility of the data effectively and efficiently for the users to enjoy minimal effort in retrieving the data, as illustrated in Figure 1.4.



Figure 1.4 : Illustration of data accessibility throughout the "Life of Field"[1]

With this rapid expansion of both geographical presence and skilled workforce, one of the main challenges for the company is about managing its voluminous data, both for domestic and international operations. In the exploration and production industry, data is being generated throughout the lifecycle of an asset, from the day the asset was being acquired, explored, developed, produced and until the day it is abandoned. The data submission to the host country is mandatory by law. An exploration and production company, who is deemed as contractor, is obliged to submit the data in accordance to the host country rules and regulation. For example, in Malaysia, a data submission is managed under a Production Sharing Contract (PSC). Failure to submit will results in a non-compliance which may results into penalty or other consequences. Sample of data which needs to be submitted, in order of main category, is as below:

- Exploration data geophysical and geological data, e.g. seismic and well data.
- Development data petroleum engineering, e.g. reservoir, log; facilities engineering, e.g. engineering drawings.
- Production data production operation, e.g. production volume, pressure, temperature; reliability and integrity data; maintenance data.

Traditionally, these physical data are catalogued and stored in manual ways, for example the exploration physical data is filed into a record management center. As the company grows, the size of the data becomes voluminous and more difficult to be managed. It leads to a relatively longer cycle time to search and retrieve known data for analysis and decision making process. In addition to the physical data, exploration and production companies are also being challenged to manage their massive digital data, as a result of data generation from processes which are utilizing software technology. The data which is stored in multiple databases in various technology platforms made it difficult for the users to access and ascertain the quality and integrity of the data.

#### 1.4 **Project Objectives**

The objectives of the project are as below:

- a. To conduct a study on available maturity models relevant to the data management, especially in the exploration and production industry.
- b. To analyze and to specify the adoption of available maturity models to meet the business requirement of the E&P Company.
- c. To specify detail elements of the DM<sup>3</sup> including maturity levels, process areas, descriptors of goals and practices.
- d. To implement the DM<sup>3</sup> by conducting baseline assessment of a selected area in the business using the Data Management Maturity Model.

#### 1.5 Project Scope

The list below describes the scope of work for this project to achieve the objectives of the project:

- a. Establish a project plan to define the activities or tasks which are required to achieve the DM<sup>3</sup>.
- b. Conduct literature survey to study the available maturity models which are suitable to be adopted as a DM<sup>3</sup>.

- c. Capture the requirement on the  $DM^3$  to meet the business needs.
- d. Analyze and specify the adoption of the available maturity model to align with the requirement of the  $DM^3$ .
- e. Design and specify the details elements of the DM<sup>3</sup> to tailor the adopted maturity models to the requirement of DM<sup>3</sup>. The elements will include maturity levels, process areas, description of goals and practices. This shall be considered as the development phase of the project.
- f. Conduct baseline assessment to determine the current level of maturity as part of a testing phase of the maturity model.

#### **1.6** Importance of the Project

This project is important to the E&P Company to ensure data management in the company becomes more efficient, effective and has a measurable impact to the business. Availability of Information Technology introduces some challenges in managing the data, especially from the context of technology implementation and different level of readiness of the organization, including the competency of the people in managing the data. In some situations, the availability of competent personnel to manage the data or low level of prioritization to managing the data has led to a scenario where the data is not being managed at all. As the operation of the company progresses over the years, the data is being neglected and there is a risk of data loss.

In order to get the data management back on track, there is a need to implement a structured approach towards measuring the progress of data management. As a result, Data Management Maturity Model, hereinafter referred as DM<sup>3</sup>, is proposed to be implemented to measure the progress of the data management and appropriate actions to be taken to address each data management gaps. This DM<sup>3</sup> will focus on the data related

to Exploration and Production organization, and serves as a guide for data management process improvement, data management projects prioritization, standardization of practices and relevant investment appraisal, to indicate measureable impact to the organization.

#### 1.7 Chapter Summary

This chapter has described some background information about the E&P Company and the importance of managing its data as it has a great impact to the E&P Company in its quest to find more hydrocarbon in the subsurface. The company requires a mean to gauge the impact of its investment on data and what can be done to continuously improve the way the company is managing its data. As a result, the DM<sup>3</sup> project has been established to pursue these objectives.

In this chapter, the project overview information has been captured as described by the following list:

- Introduction to the project,
- Company background,
- Background of the problem,
- Project objectives,
- Project scopes, and
- Importance of the project

This report will continue to cover key areas of the project as described in the following list:

• Chapter 2 – captures the literature review which was conducted for this project.

- Chapter 3 describes the methodologies which have been adopted for this project. The methodologies will include the project execution and problem solving methodologies.
- Chapter 4 records the pertinent discussions about the project in the context of its deliverables, outcomes, constraints and recommendations for future related projects.
- Chapter 5 captures the conclusion of the project and it will include the lessons learned and comments from the project. It will highlight the lessons learned from the Software Engineering perspectives.

#### REFERENCES

- E&P\_Company, Data Management Update Current Situation, Challenges and Forward Plans 2008.
- Tobias Mettler, P.R., Robert Winter, Towards a Classification of Maturity Models in Information Systems. Management of the Interconnected World, 2010: p. 333-334.
- Kevin Crowston, J.Q., A Capability Maturity Model for Scientific Data Management. 2010.
- Martin D. Fraser, V.K.V., A Formal Specifications Maturity Model. Communications of the ACM, 1997. 40(12).
- 5. Fraser, M.D., Kumar, K., Vaishnavi, V.K., Strategies for incorporating formal specifications in software development. Commun. ACM, 1994: p. 74-86.
- Mira Kajko-Mattsson, S.F., Ulf Olsson, Corrective Maintenance Maturity Model (CM3): Maintainer's Education and Training. IEEE, 2001.
- Nolan, L.R., Managing the Crisis in Data Processing. Harvard Business Review, 1979. 57(2): p. 115-126.
- Eisenhardt, K.M., Building Theories from Case Study Research. Academy of Management Review, 1989. 14(4): p. 532-550.

- Galliers, R.D., and Sutherland, A.R., Information Systems Management And Strategy Formulation: 'The Stages Of Growth' Model Revisited. Journal of Information Systems, 1991. 1(2): p. 89-114.
- Christopher P. Holland, B.L., A Stage Maturity Model for Enterprise Resource Planning Systems Use. The DATA BASE for Advances in Information Systems, 2001. 32(2).
- Ismael Caballero, M.P., CALDEA: A Data Quality Model Based on Maturity Levels. IEEE, 2003.
- 12. Thoo, E., Toolkit: Data Management and Integration Maturity Assessment. Gartner, 2009.
- 13. Value Team ApS, Enterprise Maturity Models. 2010.
- Jess B. Kozman, L.G., Maturity Models for E&P Data and Information Management Organizations. SPE, 2004.
- Kozman, J.B., Data on Demand: The Emerging Global Business Case. Society of Petroleum Engineers, 2005.
- Pen, D.Z.a.W., Enterprise e-Information Level and Maturity Analysis. Society of Petroleum Engineers, 2005.
- PMI, A Guide To The Project Management Body of Knowledge (PMBOK Guide) Fourth Edition. 2008.
- Robert E. Park, W.B.G., William A. Florac, Goal-Driven Software Measurement — A Guidebook. 1996.
- 19. E&P\_Company, E&P Data Management 2008.

- 20. E&P\_Company, Information Management Lab Presentation to Management Committee. 2009.
- 21. SEI, CMMI® for Development, Version 1.3. 2010.
- 22. Gabriela Gheorghe, F.M., Stephan Neuhaus, Alexander Pretschner, GoCoMM: A Governance and Compliance Maturity Model. ACM, 2009.
- 23. IEEE, Guide to the Software Engineering Body of Knowledge. 2004.
- 24. E&P Company, Petrophysics Project Database Management System. 2011.