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ABSTRACT

The study o f viscoelastic fluid has becom e increasingly important in the last few  

years. This is mainly due to its many applications in petroleum drilling, 

manufacturing o f  food and paper, and many other similar activities. In this thesis, the 

steady free and m ixed convective boundary layer flow  of a viscoelastic fluid past a 

horizontal circular cylinder has been studied separately subject to their own constant 

surface temperature boundary conditions. For the problem of mixed convection, the 

study also considered the problem that subjected to constant heat flux boundary 

conditions. The constitutive equations of viscoelastic fluids usually generate a 

higher-order derivative term in the momentum equation than equations of Newtonian  

fluid. Thus, there are insufficient boundary conditions to solve the problems of 

viscoelastic fluid completely. Therefore, the augmentation o f  an extra boundary 

condition is needed at infinity (far from the wall). In each case, the governing 

boundary layer equations are first transformed into a non-dimensional form, and then 

into a set of non similar boundary layer equations which are solved numerically 

using an efficient implicit finite-difference method known as Keller-box scheme. 

Numerical result presented include velocity profiles, temperature profiles, heat 

transfer characteristics, namely the local heat transfer, local skin friction coefficient 

and local wall temperature distribution for a wide range of material paramater K 

(viscoelastic parameter), prandtl number Pr, and m ixed convection parameter X. In 

each problem, it is found that velocity distributions decrease when the value of 

viscoelastic parameter, K increases, whereas the opposite behaviour is observed for 

the temperature distribution. It is worth mentioning that the results obtained in 

viscoelastics fluids when the parameter K =  0 (Newtonian fluids) are in excellent 

agreement with those obtained in viscous fluids (Newtonian fluids).
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ABSTRAK

Penyelidikan tentang masalah bendalir likat kenyal menjadi semakin penting sejak 

beberapa tahun kebelakangan ini. Ini adalah disebabkan oleh aplikasinya dalam 

penggerudian minyak, pembuatan kertas dan makanan serta aktiviti seumpamanya. 

Dalam tesis ini, konveksi bebas dan campuran mantap pada lapisan aliran sempadan 

bendalir likat kenyal melewati silinder sirkular melintang dikaji secara berasingan 

terhadap suhu malar syarat sempadan masing-masing. Untuk masalah konveksi 

campuran, kajian turut meneliti masalah berkaitan syarat sempadan fluks pemalar 

panas. Persamaan-persamaan juzuk bendalir likat-kenyal ini terjana dengan sebutan 

terbitan peringkat tinggi di dalam persamaan momentumnya berbanding persamaan 

bendalir Newtonan. Oleh itu, permasalahan yang di hadapi ialah ketidakcukupan 

syarat-syarat sempadan untuk menyelesaikan masalah bendalir likat-kenyal ini. Oleh 

yang demikian, penambahan syarat sempadan di infiniti (jauh dari permukaan) 

diperlukan. Bagi setiap masalah, pertama sekali, persamaan menakluk di ubah 

menjadi bentuk tak bermatra dan kemudian menjadi satu set persamaan lapisan 

sempadan tak serupa yang mana diselesaikan secara berangka menggunakan skim  

beza terhingga tersirat yang efektif yang dikenali dengan kaedah kotak-Keller 

dengan menambah syarat sempadan di infiniti. Penyelesaian berangka dipaparkan 

meliputi profil kelajuan, profil suhu, ciri ciri pemindahan haba, antaranya 

pemindahan haba setempat, pekali geseran kulit setempat dan taburan suhu dinding 

setempat juga diperolehi bagi nilai-nilai parameter K (parameter likat kenyal), 

Nombor Prandtl, Pr, dan parameter olakan campuran, X . Bagi setiap masalah, 

keputusan menunjukkan taburan kelajuan menurun apabila nilai parameter likat 

kenyal, K meningkat sedangkan keadaan berbeza di lihat pada taburan suhu. 

Keputusan yang diperolehi dalam kajian ini apabila parameter K = 0 (bendalir 

newtonan) menunjukkan hasil yang memuaskan setanding dengan keputusan yang 

telah diperolehi menerusi bendalir likat (bendalir newtonan).
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CHAPTER 1

INTRODUCTION

1.1 General Introduction

The convective mode o f  heat transfer is generally divided into two basic 

processes, which are natural or free convection, and forced convection. Natural 

convection is caused by buoyancy forces due to density differences o f temperature 

variations in the fluid. When heated, the density change in the boundary layer causes 

the fluid to rise and be replaced by cooler fluid, which also heats and rises. This 

continues as a phenomenon called free or natural convection. In any forced 

convection situation, natural convection effects are also present under the presence o f  

gravitational body forces. In addition, when the effect o f force flow in free 

convection becomes significant, the process is then called mixed convection flows 

which are a combination o f natural and force convection flows. Recently, The study 

on free and mixed convection has received much attention to many researchers due 

to the numerous engineering applications. An exact analytical solution is still out o f  

reach due to the nonlinearities in the Navier-Stokes and energy equations. The 

earliest attempts to compute this problem is involved the solving o f  simplified 

boundary layer equations.

Boundary layer is a narrow region o f  thin layer that exists adjacent to the 

surface o f  a solid body when a real fluid flows past the body. In this region, the effect 

o f viscosity is obvious on the flow o f  the fluid that results in large velocity gradient 

and the presence o f  shear stress. The various transfer processes which take place in 

fluids and between solids and fluids are momentum, mass, and heat transfer. When
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formulating the conservation laws o f  mass, momentum, and energy, the laws o f  

thermodynamics and gas dynamics have to be observed. This means that along with 

the boundary layer flow, there are also the thermal boundary layer and the mutual 

influence o f these boundary layers upon one another to be accounted for. The 

concept o f  boundary layer plays an important role in many branches o f engineering 

sciences, especially in hydrodynamics, aerodynamics, automobile and marine 

engineering (Kundu and Cohen, 2004).

Although extensive research work has been devoted to heat transfer in 

viscous (Newtonian) fluids, more recently, research in non-Newtonian fluids has 

gained momentum as well. Therefore, in this thesis, we considers a few problems 

that apply the boundary layer concept into the viscoelastics fluid. viscoelasticity is 

the nature o f  a second-grade fluid which is also the type o f non-Newtonian fluids, 

and it is found in polymer fluids where these fluids exhibit both the viscous and 

elastic characteristics. Viscous materials, like honey, resist shear flow and strain 

linearly with time when a stress is applied, while the elastic materials strain 

instantaneously when stretched and just as quickly return to their original state once 

the stress is removed. The viscous property is due to the transport phenomenon o f the 

fluid molecules while the elastic property is due to the chemical structure and 

configuration o f the polymer molecules.

Viscoelastic fluids, which is also known as second-grade fluids, are more 

accurate than the first-order fluids with exponential dependence o f  viscosity and 

temperature. A detailed discussion on second and third-order fluids can be found in 

the study o f  Dun and Rajagopal (1995). The simplest model for viscoelastic fluids 

was formerly proposed by Rivlin and Erickson (1955) when they considered the 

stress deformation relation for isotropic materials. The idea o f viscoelastic fluid was 

also very well documented by Byron (1977), who described the fluid as never 

moving very far or very rapidly from its initial configuration. In addition, an 

investigation into the flow o f elastic-viscous fluids past a circular cylinder was done 

by Harnoy (1987).
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Damseh, et al. (2008) studied the problem o f transient mixed convection flow o f a 

second-grade visco-elastic fluid over a vertical surface and they found that the 

velocity decreases inside the boundary layer as the viscoelastic parameter is 

increased and consequently, the local Nusselt number decreases. This is due to 

higher tensile stresses between viscoelsatic fluid layers which has a retardation 

effects on the motion o f the layers. Hsia, and Hsu, (2009) has investigated a 

conjugate heat transfer o f mixed convection for visco-elastic fluid past a triangular 

fin. The Results indicated that the elastic effect in the flow can increase the local 

heat-transfer coefficient and enhance the heat transfer o f a triangular fin. Very 

recently, the problem on mixed convection flow o f  a viscoelastic fluid through a 

porous medium in a vertical channel with permeable walls has been studied by 

Reddy and Raju (2010).

The problems that considered the viscoelastic fluids, which is a type o f non- 

Newtonion fluids, has gained considerable importance because o f its applications in 

various branches o f science, engineering, and technology, particularly in material 

processing, chemical and nuclear industries, geophysics, and bio-engineering. The 

study o f non-Newtonian fluid flow is also o f  significant interest in oil reservoir 

engineering. For a variety o f reasons, non-Newtonian fluids are classified on the 

basis o f their shear properties.

1.2 Statement of Problem

Interest in the viscoelastic fluids has increased substantially over the past 

decades due to the occurrence o f  these fluids in many technological applications. 

Therefore, this research is conducted to study one type o f non-Newtonian fluid which 

is called the viscoelastic fluid. The study will explore the following questions. How 

do the viscoelastic mathematical models compare with the existing Navier-Stokes or 

Newtonian mathematical models in describing the nature o f free and mixed 

convection boundary layer flow past a horizontal circular cylinder? What are the
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effects o f viscoelastic fluids parameter on the skin friction, heat transfer, velocity 

profile and temperature profile?

1.3 Obj ectives o f  Research

The objectives o f this research are to carry out mathematical formulations 

and develop numerical algorithm using FORTRAN 77 for the computation, in order 

to analyze and investigate the following problems:

1. Mixed convection boundary layer flow o f  a viscoelastic fluid over a 

horizontal circular cylinder with constant temperature

2. Mixed convection boundary layer flow o f  a viscoelastic fluid over a 

horizontal circular cylinder with constant heat flux

3. Free convection boundary layer flow o f a viscoelastic fluid over a 

horizontal circular cylinder with constant temperature

The analysis includes: (i) formulation o f  the mathematical models to obtain the 

governing boundary layer and heat transfer equation for the above mentioned new 

models, (ii) nonsimilar boundary layer transformation, and (iii) numerical 

computation to solve the problem using a finite difference scheme. The scheme 

employed is the Box method developed by Keller (1970,1971) and throughout the 

whole course o f this research, the main reference for the Keller-box method are the 

books by Cabeci and Bradshow (1977, 1988) and Na (1979). The convergence 

criterion required that the maximum absolute error between two successive iterations 

was 1 0 -6.

1.4 Scope o f Research

This research takes into consideration the steady two-dimensional 

incompresssible viscoelastic fluid model. The problem is the limited boundary layer 

flow pass a horizontal circular cylinder. Since, for most engineering applications, the
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flow velocities are moderate; hence the viscous-energy-dissipation term becomes 

small and can be neglected.

1.5 Significance of the Research

The theory boundary layer problem o f  viscoelastic fluids has gained a lot o f  

interest, and become important in recent years because o f  their applications in several 

industrial-manufacturing processes involving petroleum drilling, manufacturing o f  

foods and paper. In engineering applications, it is possible to use viscoelastic fluids 

to reduce frictional drag on the hulls o f  ships and submarines. Some typical 

applications for viscoelastic boundary layer flow over a stretching sheet are polymer 

sheet extrusion from a dye, glass fiber and paper production, and drawing o f  plastic 

films. There are also many applications involving atomization o f  viscoelastic fluids 

such as paints, coating, inks, and jet fuels. The relationship between viscoelasticity 

and drop formation aimed at the production o f  mono-disperse colloidal sized droplets 

uses the same approach as ink jet printing and particle production.

Free convection has attracted a great deal o f  attention from researchers 

because o f its presence both in nature and engineering applications. In nature, 

convection cells formed from air rising above sunlight and warming land or water are 

a major feature in all weather systems. Convection is also seen in the rising plume o f  

hot air from fire, oceanic currents, and sea-wind formation (where upward 

convection is also modified by Coriolis forces). In engineering applications, 

convection is commonly visualized in the formation o f  microstructures during the 

cooling o f molten metals, fluid flows around shrouded heat-dissipation fins, and solar 

ponds. A very common industrial application o f free convection is free air cooling 

without the aid o f fans; this can happen from on a small scale (computer chips) to 

large scale process equipment. Significant free convection is induced by the density 

stratification o f air in the thermal boundary layer (Nazar, (2003)).

On the other hand, the mixed convection (combination o f forced and free 

convection) flow with and without mass transfer occurs in many technological and
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industrial applications such as solar central receivers exposed to wind currents, 

nuclear reactors cooled during emergency shutdown, heat exchangers placed in low- 

velocity environments, boundary-layer control on airfoil, lubrication o f ceramic 

machine parts and food processing. Mixed convection flows arise when the free 

stream, inertial and near wall buoyant forces have strong effects on the resulting 

convective heat transport.

Therefore, the study o f free and mixed convection o f viscoelastic boundary 

layer flow problems is important due to its imperative applications in real life. The 

result or output o f  this research enhances the understanding o f  the fluids flow 

phenomena and improves the development o f  related industries, for example the 

manufacturing industries. Besides that, the generation o f efficient algorithm o f  the 

viscoelastics problem helps in solving the problem o f computational fluid dynamics 

in future.

1.6 Outline of Thesis

This thesis consists o f  seven chapters, including this introductory chapter in 

which the statement o f problem, objectives, scope and significance o f research are 

presented. In Chapter 2, a literature review for the proposed problem is presented 

and discussed. All o f the problems in this thesis are solved numerically using the 

Keller-box method.

Chapters 3, 4 and 5 contain the detailed solution for Problem 1 (mixed 

convection boundary layer flow o f  a viscoelastic fluid over a horizontal circular 

cylinder with constant temperature), Problem 2 (Mixed Convection Boundary Layer 

Flow o f a Viscoelastic Fluid Over a Horizontal Circular Cylinder with Constant Heat 

Flux) and Problem 3 (Free Convection Boundary Layer Flow o f  a Viscoelastic Fluid 

Over a Horizontal Circular Cylinder with Constant Temperature) respectively. Each 

chapter consists o f the basic equation, solution procedures, result and discussion and 

also conclusion o f the proposed solution. In addition, in chapter 3, we also include
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further discussion and details about numerical algorithm using FORTRAN 77 for the 

first problem.

Finally the concluding chapter, Chapter 6  contains a summary o f the main 

results o f the research and several recommendations for future research. A  complete 

program for this problem is given in appendix A to C.
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