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ABSTRACT

Structural reliability theory has been applied to design structural members. A

major goal is to achieve a balance between safety and cost (or weight) for a given

safety level. It is therefore desirable that optimum design is achieved through

probabilistic based design procedures. This study is concerned with optimum design

of connecting links frequently found in a single point mooring system, based on

probabilistic based design at the component level. Single point mooring systems are

subjected to fatigue loading due to environment conditions. The study considered a

single point mooring system located in Volve Field in the North Sea, offshore

Norway. With the existing deterministic design basis, the probabilistic based design

is performed using the design parameters obtained from the design codes used in the

deterministic design. The results of probabilistic based design output are checked

against the deterministic based design output. The probabilistic based results are

obtained from Monte Carlo simulation where the basic input in the Transfer Function

value which was obtained from deterministic Finite Element Analysis. As a

conclusion, the fatigue life values for the connecting links obtained are compared

based on the design method. Through this research study, it has been proved that an

economical and safe structure can be designed using probabilistic design method,

with respect to fatigue loading. This method can be implemented in the engineering

stage.
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ABSTRAK

Teori keboleharapan telah diaplikasi untuk merekabentuk strucktur. Matlamat

utama adalah untuk mencapai keseimbangan diantara keselamatan dan kos. Oleh itu,

secara umumnya, rekabentuk optimum boleh dicapai menerusi prinsip rekabentuk

keboleharapan. Objektif utama penyelidikan ini adalah untuk merekabentuk secara

optimum penyambung yang terdapat dalam sistem single point mooring, dengan

menggunakan prinsip rekabentuk keboleharapan di peringkat komponen. Sistem

single point mooring terdedah kepada beban lesu akibat keadaan persekitaran.

Penyelidikan ini tertumpu kepada sistem single point mooring yang terletak di sektor

Volve di North Sea, pesisir Norway. Dengan berpandukan pelan rekabentuk

konvensional, rekabentuk keboleharapan dibuat dengan menggunakan maklumat

daripada kod-kod amalan yang diguna untuk merekabentuk struktur dengan kaedah

biasa. Keputusan daripada rekabentuk keboleharapan dibandingkan dengan

keputusan daripada rekabentuk biasa. Keputusan rekabentuk keboleharapan

diperolehi menerusi simulasi Monte Carlo dimana input utama dalam simulasi ini

adalah nilai Fungsi Pemindah, yang diperoleh daripada Analisa Elemen Terhingga.

Sebagai kesimpulannya, hayat lesu penyambung yang diperolehi dibandingkan di

antara kaedah rekabentuk biasa dan kaedah rekabentuk keboleharapan. Menerusi

penyelidikan ini, adalah terbukti bahawa, struktur yang ekonomi and selamat dapat

direkabentuk dengan menggunakan prinsip rekabentuk keboleharapan, sekiranya

struktur tersebut terdedah kepada beban lesu. Aplikasi kaedah rekabentuk

keboleharapan boleh diaplikasikan di peringkat kejuruteraan.
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