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ABSTRACT 

Enormous digital electroencephalography (EEG) acquisition systems 

available nowadays for researchers due to the high demand in the brain signal 

research. Using EEG-based emotion recognition, the computer can look inside a user 

head to observe their mental state of sad and happy emotion.  Thus, there is a need 

for efficient mechanism to detect those emotions accurately along with computation 

complexity. The current algorithms available are excessively complex with higher 

computational time.  In this study, 14 channels of EEG signals acquired from 

emotive device with 128 Hz sample rate. These raw signals undergo preprocess stage 

using band pass and ICA filter. This research focuses two components which is 

feature extraction and classification. A combination of statistical features has been 

carrying out to extract important signal. To classify the EEG signal into sad and 

happy classes, Support Vector Machine (SVM) and Linear Regression has been 

applied. Waikato Environment for Knowledge Analysis (WEKA) as training tools is 

employ to train the dataset and test the accuracy of the classifier. Results presented 

that Linear Regression has better detection accuracy with 95% compared to SVM 

with 80% average accuracy.  In conclusion this research suggests using Linear 

Regression for future work on predicting between sad and happy emotion from the 

EEG signal. 
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ABSTRAK 

Pelbagai alat pengesanisyarat elektroensefalografi “Electroencephalography” 

(EEG) berada dipasaran pada masa kini khusus untuk penyelidikan otak. Perkara ini 

berlaku disebabkan oleh permintaan yang tinggi didalam bidang kajian isyarat otak.   

Menggunakan EEG sebagai asas dalam kajian untuk mengenal pasti emosi, komputer 

digunakan untuk melihat kondisi otak dan mengenal pasti keadaan mental mereka.  

Justeru itu, mekanisma untuk mengenal pasti emosi secara tepat berserta dengan 

pengiraan yang ringkas dan mudah amat diperlukan.  Algorithm yang ada sangat 

rumit dan tempoh pengiraan yang agak lama.  Didalam kajian ini, 14 saluran isyarat 

EEG diperoleh daripada peralatan Emotiv beserta dengan 128Hz sample rate. 

Kesemua isyarat ini melalui fasa proses permulaan menggunakan penapis lulus jalur 

“band pass” dan penapis ICA.  Kajian ini fokus kepada dua komponen iaitu 

pengekstrakan ciri-ciri dan pengkelasan.  Kombinasi ciri-ciri statistik telah 

digunakan untuk mengekstrak isyarat yang penting. Alogritma Support Vector 

Machine (SVM) dan regresi linear telah digunakan telah digunakan untuk 

pengkelasan diantara emosi sedih dan gembira.  Waikato Environment for 

Knowledge Analysis (WEKA) sebagai peralatan latihan juga telah diadaptasi untuk 

melatih data dan menguji ketepatan pengkelasan emosi.  Keputusan menunjukkan 

bahawa regresi linear menghasilkan ketepatan yang lebih tinggi iaitu 95%, lebih 

tinggi daripada SVM iaitu hanya 80% purata ketepatan.  Kesimpulan daripada kajian 

ini merumuskan bahawa penggunaan regresi linear untuk kerja-kerja berkaitan 

pengkelasan diantara emosi sedih dan gembira daripada isyarat EEG pada masa 

hadapan. 
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INTRODUCTION 

1.1 Introduction 

Brain is the one of important organ of human body which is capable to 

generate an electrical signal. Limbic system is a part of brain which plays primary 

role in setting a person’s emotional state. This particular part stores positive 

emotional memory as happy, optimistic, and honored etc. Melancholic, stress, 

sadness are categories and stored as negative memories. The PFC located at the front 

half of the brain responsible for emotional control, empathy, and judgment etc. If the 

PFC is low in activity, it can make a person disorganized or antisocial. On the other 

hand, if it is hyper active, it can cause anxiety, inflexibility and impulsiveness 

(Phelps, 2012) . 

Emotions on the other hand become the most crucial part of neuroscience and 

understandings of brain part that trigger emotional process are of great importance 

for future research in human cognition associated with psychopathology (Jackson et 

al., 2005; Ogino et al., 2007; Spielberg et al., 2008).  The activation over the right 

PFC for negative or pain related trigger and left PFC for positive trigger has been 

observed through electroencephalography (EEG) (Aftanas et al., 2001a, 2001b, 

2002; Davidson et al., 1990; DePascalis et al., 1998; Harmon-Jones and Allen, 1998; 

Tomarken et al., 1990). 
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According to Soanes (2008), a brainwave can be defined as a sudden clever 

idea.  Small pulses produce an electric activity when neurons communicate with each 

other. This wave changes according to human action and emotion where it reaches to 

high frequency when the brain is wired or hyper alert or vice versa when it is dreamy 

or feels tired (Roy et al., 2007). It is the second front studies in biological research. 

Hans Eysenck, the German-born British psychologist has used this brainwave to 

study pattern and speed of response in people taking intelligence tests. From the 

study, relationships between certain aspects of EEG waves are identified, for event-

related-potential waves and scores on a standard psychometric test of intelligence 

(Sternberg, 2013). 

The EEG waves are very important to investigate brainwave.  Varieties of 

image acquisition machine are available to measure a brain activity such as EEG, 

magneto encephalography (MEG), positron emission tomography (PET), functional 

magnetic resonance imaging (fMRI), and optical imaging (Al-ani and Trad, 2010).  

Brain signal activity detected using EEG signal are widely used in medical science, 

neuron science, psychology, computer science, electric engineering and others 

(Heejun et al., 2013).  EEG signal is commonly used due to certain state can be 

recognized from the psychoanalysis of brainwave balancing state (Hj Murat et al., 

2010). The typical quantitative of brainwaves that taken into experiment is delta 

waves, theta waves, alpha waves and gamma waves. Each wave plays important 

roles in human activities such as dreamless sleep, creative, fantasy, relaxed, thinking, 

and alertness (Neurosky, 2009).  

EEG is emerging rapidly over this decade. Research made by Hosseini et al., 

(2011) have classified the emotional stress using brain activities into two categories 

which is calm-neutral and negative excited. It shows an improvement of accuracy by 

combining the EEG signal and peripheral signals. EEG brainwaves are used 

progressively in Intelligent Tutoring System (ITS) where the precision and 

objectivity of cognitive and emotional state are crucial to predict the learner’s 

emotion (Heraz et al., 2007). 
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This research focuses on the features extraction techniques used to classify 

the EEG signals into two emotions sad and happy where “sad” represents the right 

PFC and “happy” represent left PFC. The accuracy is measured will be The obtained 

results are very important and useful for future research and application development 

in emotion fields.  

1.2 Research Background 

Brain is a complex organ in human body and it is still a mystery to human 

being (Eagleman, 2007). Understanding the basic fundamentals of the brain in terms 

of its physiology and functionality will be the key to solve many real world 

problems. Psychology is applied in order to solve problem in fields such as mental 

health, business, education, sports, law, medicine and the design of machines 

(psychology book). Affective information is collected from facial features and vocal 

patterns, which are the most widely studied modalities for affect detection (Tao and 

Tan, 2005). Besides these modalities, research has recently focused on the use of 

physiology signals to study emotion (Kim, et. al, 2008). 

According to Dhariya, (2013) emotion is a vital aspect in a communication 

between human beings. Emotions are also considered to reconcile stimulus and 

response. However, it is very subjective and hard to define (Dhariya, 2013). 

Takahashi (2004) agreed that emotion recognition is very interesting fields; however 

it is difficult task to recognize emotions.  Hosseini et al. (2011) have classified 

human emotion states with main focus on stress using EEG brain signals in order to 

assist computers and robot to communicate naturally with human. Classification 

process is important as it is one of the preliminary steps in order to develop a high-

quality Business Computer Interface (BCI) application (Hosseini and Naghibi-S, 

2011). 
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Selection of the finest frequency band and pull out a good set of features is 

still an unsolved research issue (Sridhar and Rao, 2012).  There have been many 

researches carried out to find good features extraction. Features comparison between 

conventional features and new proposed energy based features has shown an increase 

in accuracy (Murugappan et al., 2010). More efficient features are needed to improve 

the accuracy of emotion detection. 

Accuracy in pattern recognition of brainwave is important to classify the 

psychologist behavior of person in order to eliminate misinterpret data. Accurate data 

base is required in order to copy human communication. Several studies have been 

conducted to recognize emotions using face and voice. Huge success has been 

achieved using those signals. 60% of research is carrying out using EEG-based 

artificially evoked emotion (Bos, 2007) . 

1.3 Problem statement  

To extract information from EEG signal, classification of data with 

appropriate techniques is of great importance EEG signals carry valuable information 

about the function of the brain. The classification, features extraction and evaluation 

procedures of these signals have not been well developed (Kutlu et al., 2009). Data 

itself plays an important role towards the accuracy of classification. It has been 

identified; two types of data can be extracted from the brain signal which is 

associated to frequency band (Murugappan et al., 2010) and time domain (Yuen et 

al., 2013). The analysis of brain signals using noninvasive technique is a challenging 

task and its solution depends on machine learning, signal processing and the 

knowledge of the neuroscience. 

Nowadays, there is no easily available benchmark databases of EEG labeled 

with emotions. However, there are number of algorithms to recognize emotions such 

as machine learning, curve fitting, signal processing and many more. But the 
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recognition accuracy is very low. Therefore development of algorithms is needed to 

improve the accuracy. As this field is still new, only limited emotions can be 

recognized (Liu, Sourina, and Nguyen, 2011).  

The statistical approach shows an excellent result in EEG classification. Yuen 

et al., (2014) have achieved overall classification rate as high as 90%. However, the 

proposed classification technique is complex and time consuming. Therefore to 

achieve high accuracy with more simple classification in less time is needed.  

There are a number of researches conducted on feature extraction of EEG 

signals such as statistical features, signal variance, and power spectral density (PSD). 

But it stills an open research area and there are some issues need to be addressed 

such as: 

i. How to achieve accuracy to differentiate sad and happy emotion? 

ii. How to classify emotions into two classes? 

iii. How much accuracy is achieved, and how the accuracy is properly 

evaluated? 

1.4 Objectives 

The main objective of this study is to classify the EEG signals according to 

emotion as sad or happy using statistical features extraction technique to improve the 

classification accuracy. The specific objectives are given as follows: 

i.  To adapt statistical features algorithm to classify EEG signal into sad 

and happy.  

ii.  To deploy classification algorithm on sad and happy emotion using 

the EEG signal. 
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1.5 Scope  

The scopes of this research are as follow:  

i. Data was conducted from 20 participants from Universiti Technologi 

 Malaysia (UTM) age ranges between 25-35 years using Emotiv’s  

 Neuroheadset a signal acquisition device. This experiment has been 

 supervised by PhD student.  

ii. EEG signal recorded from emotive device will be classified into sad 

and happy emotion. 

1.6 Research Overview 

This research is divided into three chapters. Chapter 2 presents a background 

literature on emotion theories. This chapter includes reviews on emotion 

representations models and neuroscience environment.  The feature extractions used 

by different researchers are also evaluated and presented. Classification technique to 

determine the emotions are reviewed to find the classification that suit with the 

proposed feature extraction. Chapter 3 describes methodology used to conduct 

present research work. The operational framework for the rest of research is also 

presented in this chapter. The selected features extractions and techniques for 

classification are presented in sequence. Chapter 4 explains the propose technique 

including feature extraction calculation, classification technique flow and the 

evaluation procedure to find the best classification for proposed feature extraction. 

The evaluation is determined based on TP, FP, accuracy and precision. Chapter 5 

describes result, discussion, conclusion or outcome of the research project. 
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