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ABSTRACT 

 

 

 

 

Nowadays, cancer is one of the leading causes of death in the world. 

However, cancer can be treated if it is diagnosed earlier. Recently, machine learning 

classifiers are widely applied in cancer detection due to their accurate diagnosis in 

cancer classification problems. However, the performance of the classifiers can be 

affected by the selection of the required variables used in the classification process. 

To choose these variables, this research proposed two classification models using 

two different feature selection methods namely: Grey Relational Analysis (GRA) and 

Improved Grey Relational Analysis (IGRA). Both of these methods are combined 

with a Support Vector Machine (SVM) classifier and named as GRA-SVM and 

IGRA-SVM.  The GRA and IGRA act as a feature selection method in the 

preprocessing phase of SVM classifier to recognize potential variables in cancer data 

that can be used as significant input to SVM classifier to improve SVM classification 

capability performance. Using performance measuring tools, the efficiency of the 

proposed classification models: GRA-SVM and IGRA-SVM based on the value of 

geometric mean, sensitivity, specificity, accuracy and area under Receiver Operating 

Characteristic curve were compared with standard SVM and other classification 

models from previous studies. The results showed that the proposed GRA-SVM and 

IGRA-SVM classification models have achieved better performance in classifying 

the cancer data with better results ranging between 2.64% to 88.9% in the selection 

of potential variables.  
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ABSTRAK 

 

 

 

 

Kini, kanser adalah salah satu punca utama kematian di seluruh dunia. Namun, 

kanser boleh dirawat jika penyakit ini boleh didiagnosis awal. Kebelakangan ini, 

pengelas Machine Learning (ML) digunakan secara meluas dalam pengesanan kanser 

kerana kaedah ini dapat mendiagnosis dengan tepat dalam menyelesaikan masalah 

pengelasan kanser. Namun, prestasi pengelas tersebut dipengaruhi oleh pemilihan 

pembolehubah-pembolehubah yang diperlukan yang digunakan dalam proses 

pengelasan. Untuk memilih pembolehubah-pembolehubah tersebut, kajian ini 

mencadangkan dua model pengelasan menggunakan dua jenis teknik pemilihan ciri iaitu 

Grey Relational Analysis (GRA) dan Improved Grey Relational Analysis (IGRA). 

Kedua-dua teknik ini digabungkan dengan pengelas Support Vector Machine (SVM) dan 

dinamakan sebagai GRA-SVM dan IGRA-SVM. GRA dan IGRA bertindak sebagai 

teknik pemilihan ciri di dalam fasa prapemprosesan untuk mengenalpasti pembolehubah 

yang berpotensi yang boleh digunakan sebagai input kepada pengelas SVM bagi 

meningkatkan keupayaan prestasi pengelas SVM. Dengan menggunakan alat 

pengukuran prestasi, kecekapan dua model pengelasan yang dicadangkan iaitu GRA-

SVM dan IGRA-SVM dibandingkan dengan SVM piawai dan model pengelasan yang 

lain daripada kajian terdahulu berdasarkan nilai min geometri, kepekaan, kekhususan, 

kejituan dan luas di bawah lengkungan ciri penerima operasi. Keputusan kajian 

menunjukkan bahawa model pengelasan GRA-SVM dan IGRA-SVM yang dicadangkan 

telah mencapai prestasi yang lebih baik dalam mengelaskan data kanser dengan 

peratusan pemilihan pembolehubah yang berpotensi di antara 2.64% ke 88.9%.  
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1  Introduction 

 

 

 Cancer is one of the leading causes of death in most countries, and the number of 

patients survives from cancer diseases are decreasing.  The survival rate is strongly 

influenced by the stage of the malignancy (malignant tumour) at the point of diagnosis.  

Therefore, a method that allows early diagnosis is desirable to increase the survival rate 

(Sattlecker, 2011).  However, the similar appearances of some types of cancer are the 

main challenge for common diagnostic tools used by the medical expert such as biopsy; 

x-ray and MRI scan (Chen, 2011).  Furthermore, the diagnosis results are subjective 

because they depend on the opinion of the medical experts.  Thus, the results can vary 

even when the same sample is examined at different times either by the same medical 

experts or others.  In addition, the total examination procedure is also time consuming 

(Sattlecker, 2011).  Therefore, a better diagnostic approach is needed.  

 

 

To improve the drawbacks of common diagnostic methods, machine learning 

classification method was introduced.  Classification method has been widely used to 

solve the cancer diagnosis problem (Makinaci, 2005; Assareh, 2008; Cinar et al, 2009; 
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Potdukhe and Karule, 2009; Subashini et al, 2009; Chen et al, 2011; Keyvanfard et al, 

2011; Ren, 2012;).  In terms of cancer diagnosis, classification method is used by the 

researchers in order to classify tumour into two different types which are malignant 

tumour (cancerous) and benign tumour (non-cancerous).  Classification method helps 

minimizing the possible errors which may occur due to inexperienced doctors.  Besides, 

the classification method also specifies the medical data to be examined faster and more 

accurate (Akay, 2009).  Classification methods are non-invasive, fast, low in costs, high-

throughput, and only need minimal amount of training (Sattlecker, 2011).  

 

 

However, for some advanced classification methods such as support vector 

machine, the dimension of variables vectors affects the performance of the classification 

and also determines the training time of the algorithm. Thus, how to extract useful 

variables and make a good selection of the variables is a crucial task (Osareh and 

Shadgar, 2009).  The choice of optimal variables plays an important role in developing a 

classification model with high classification ability (Chen, 2011).   An optimum variable 

set should have effective and discriminating variables, while mostly reduce the 

redundancy of variables pace to avoid “curse of dimensionality” problem. The “curse of 

dimensionality” suggests that the sampling density of the training data is too low to 

promise a meaningful estimation of a high dimensional classification function with the 

available finite number of training data (Osareh and Shadgar, 2009).  With the purpose 

of improving the performance of the classification method, feature selection approach 

has been proposed.  The feature selection approaches provide faster and more cost-

effective classification model (Brown, 2010).  Furthermore, feature selection is very 

useful in reducing the execution time and the dimensionality of the data to be processed 

by the classifier, and also improving the predictive accuracy.  
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1.2  Problem Background 

 

 

Cancer is a type of disease that needs early treatment in order to increase the 

survival rate of the patient.  Nowadays, there is still no single test which can accurately 

diagnose and determine the cancer stage.  Patients who are suspected of developing a 

malignant tumour are examined using common diagnostic techniques such as biopsy, X-

ray, MRI and CT scan (Weissleder and Pittet, 2008).  However, these diagnostic 

techniques have some limitations such as high cost and the limited capability to identify 

the pattern of cancers for each patient.  In order to overcome the limitations, a method 

that is accurate and robust, which is easier and cheaper to implement is needed.  

Classification method has been proposed by many researchers to determine the 

cancerous tumour in human body.  The classification method is proven to precisely 

classify tumours and produce a successful diagnosis of cancer. 

 

 

Classification is one of the supervised machine learning techniques:  Individual 

item is set into classes depends on quantitative information on one or more characteristic 

inherent in the features and based on a set of data.  The reliable performances of 

classification method gained a lot of attentions from the machine learning community.  

The results from several studies strongly suggested that the classification method 

performed better than the common diagnostic techniques to solve the cancer diagnosis 

problems.  The classification method performance is supported by the study conducted 

by Mousa et al (2008) that used a classification method to develop a system to classify 

the abnormality in digital mammograms using Fuzzy and Artificial Neural Network 

(ANN) classifiers.  Cho et al (2011) also used a classification method to analyst breast 

cancer mammography image by using Fuzzy Logic (FL) and Linear Discriminant 

Analysis (LDA) classifiers.  Meanwhile, Sun et al (2013) used multiples classifier 

namely; Support Vector Machine (SVM), Artificial Neural Network (ANN), Decision 

Tree (DT), k-Nearest Neighbour (k-NN) and Random Forest (RF) to classify lung cancer 
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data.  The results showed that classification method could produce excellent 

performance in diagnosis cancer.  

 

 

A learning algorithm that performs classification process is known as a learner or 

a classifier.  The classifier is split into two types; parametric classifier and non-

parametric classifier (Kumar and Sahoo, 2012).  The widely used parametric classifiers 

for cancer diagnosis are Naïve-Bayes (NB), Logistic Regression (LR) and Liner 

Discriminant Analysis (LDA) while the well-known non-parametric classifiers for 

cancer diagnosis are Artificial Neural Network (ANN), K-Nearest Neighbour (k-NN) 

and Support Vector Machine (SVM) (Fischer et al, 2004; Heshmati, 2011; Cınar et al, 

2009; Statnikov, 2005; Kumar and Sahoo, 2012).  Previous studies showed that the non-

parametric classifier had outperformed the parametric classifier in terms of the 

percentage of correctly classified tumour.  Moreover, the non-parametric classifiers can 

learn well and deal efficiently with high dimensional data (Enachescu, 2005; Regnier-

Coudert et al, 2011).  

 

 

Recently, Support Vector Machine (SVM) which is one of the commonly used 

non-parametric classifier had received increasing popularity in the machine learning 

community (Purnami et al, 2008).  SVM is based on linear machine in a high 

dimensional feature space.  It is non-linearly related to the input space which has 

allowed the development of fast training techniques even with a large number of input 

variables and big training sets (Akay, 2009).  Compare to other classifier such as 

Artificial Neural Network (ANN) and K-Nearest Neighbour (k-NN), SVM is proven to 

have advantages in handling classification tasks with successful generalization 

performance.  Other advantage of SVM is that training SVM is similar as solving a 

linear constrained quadratic programming problem, thus it is usually not to be trapped in 

the local minimum (Chen, 2011).  Previous analyses have shown that SVM can give 

good performance in classifying various type of cancer data (Laura and Ruslan, 2008; 
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Akay, 2009; Cinar et al, 2009; Chen et al, 2012).  Based on the advantages mentioned 

above, SVM is used as the classifier in this study to conduct the cancer diagnosis test. 

 

 

However, for the past few years, cancer classification problems have been 

extensively studied.  Cancer classification problems generally involve a number of 

variables. Not all of these varibales are equally important for a specific task. Some of 

them may be redundant or even irrelevant. Better performance may be achieved by 

discarding some variables. In other circumstances, the dimensionality of input space may 

be decreased to save some computation effort, although this may slightly lower 

classification accuracy (Lin et al, 2008). Therefore, the classification process must be 

fast and accurate, using the smallest number of variables. This objective can be achieved 

using feature selection approach. Feature selection strategies are often implied to explore 

the effect of irrelevant variables on the performance of classifier systems (Valentini, 

Muselli, & Ruffino, 2004; Zhang, Guo, Du, & Li, 2005; Acir, O¨ zdamar, & Guzelis, 

2006; Akay, 2009; Chen, 2011).  Furthermore, getting more information such as the 

most and the least significant factors that influence the cancer classifier performance is 

very important.  However, identifying the relationship among the contributing variables 

is always grey particularly when the information is not clear, incomplete and uncertain.  

Therefore, a feature selection model that can handle the incomplete cancer data is 

needed. 

 

 

  Generally, feature selection method can be divided into two categories which are 

wrapper method and filter method.  The wrapper methods are too expensive to be used if 

the number of variables is large. Filter methods are much faster and can be applied to 

large size datasets with many variables (Guyon et al, 2002; Huang et al, 2008; Mazlan, 

2009).  Grey Relational Analysis (GRA) is one of the filter feature selection methods 

which had been used by many researchers.  It is proven to help improving the 

performance of classifiers (Sallehuddin, 2009; Pan and Lin, 2010; Nagpal et al, 2012; 
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Mat Deris et al, 2013).  GRA is a multiple criteria decision support approach which 

develop ranking and suggest the best choice from a set of alternatives (Huang et al, 

2008; Li et al, 2010).  GRA has some advantages such as requiring less data, does not 

rely on data distribution and more applicable to a numeric data value (Zhang and Li, 

2006).  Besides that, GRA approach is flexible to model complex nonlinear relationships 

and it is proven to be an accurate and simple method for selecting factors especially for 

problems with unique characteristic (Sallehudin et al, 2010; Nagpal, 2012).  Thus, for 

this study, the GRA feature selection method is used to select the potential variables and 

improved the performance of the SVM classifier in cancer data classification. 

 

 

 Despite the fact that GRA could be a good feature selection method for cancer 

classification, there are some limitations in the traditional GRA proposed by Deng 

(1989).  Grey Relational Degree (GRD), used to determine the GRA ranking value, is 

mostly affected by the distinguishing rate between the compared sequences.  Therefore, 

it can change substantially when the number of sequences to be compared changes.  

Thus, the GRD value can be fluctuating because of the slight changes in the compared 

sequences (Ip et al, 2009).  In order to improve the performance of traditional GRA, Ip et 

al (2009) has proposed the improved GRA (IGRA) method.  The IGRA method used the 

original recorded data without the need of converting them and the level of the computed 

variable is seen to give a better-quality grading (Ip et al, 2009).  For that reason, the 

IGRA method approach is also used in this study as feature selection method to examine 

whether it can further improved the performance of the SVM classifier. 

  

 

In conclusion, for the purpose of getting high diagnostic capability by using only 

potential variables, a study is conducted to build a new classification model that consist 

of a feature selection method and a classifier for cancer diagnosis.  For this study, two 

classification models are developed using SVM as classifier with GRA and IGRA as 

feature selection methods.  Even though there are many classification techniques that 
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have been introduced lately for cancer classification problems, none of them has been 

tested in two different types of cancer data namely standard data and gene expression 

data.  Therefore, those techniques are not yet proven as robust techniques since none of 

them have been applied in both types of cancer data.  Therefore, in this study, both types 

of cancer data are used in order to verify the robustness of the proposed classification 

models.  Figure 1.1 summarizes the scenarios that lead to the research problem and the 

proposed solutions of this study.   
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Figure 1.1 Scenario leading to the research problem and research solution 

Machine learning classification 

techniques 

Cancer Diagnosis 

- Major challenge to get the accurate diagnosis of cancer 

 

Desired Solution 

Accurate, robust and reliable 

Common Diagnostic tools 

- Biopsy, X-ray, MRI scan 

 

Disadvantages of common tools: 

- similar appearances of some 

types of cancers are the main 

challenge 

- the diagnosis result depends on 

pathologist 

- total examination procedure is 

time consuming 

 

Machine learning 

classification techniques 

Advantages of ML classification techniques: 

- help in minimizing the possible errors which 

occur because of inexperienced doctors 

- specify the medical data to be examined faster 

and more accurate 

- non-invasive, fast, low in costs, high-throughput 

and only need minimal amount of training 

 

Non-Parametric Classifier 

SVM, ANN, k-NN 

Advantages: 

- can deal with high dimensional data 

- higher predictive accuracy 

- better diagnostic performance 

- can learn well 

Parametric Classifier 

LR, NB, LDA 

Disadvantages: 

- difficult to deal with 

high-dimensional data 

- lower diagnostic 

performance 

Disadvantages of 

individual classifier: 

- the classification 

performance depends 

on the features chosen 

 

Feature Selection method 

Filter Feature Selection 

Relief-F, GRA, CFS 

Advantages: 

- Much Faster 

- Can be applied to large size 

datasets containing many features 

 

Advantages of Feature 

Selection Method: 

- improve classifier 

performance 

- provide faster and producing 

reliable model 

- select only potentials input 

features 

Wrapper Feature 

Selection 

GS, HC, BFS 

Disadvantages: 

- Too expensive to be used 

if the number of features 

are large 

 

A new cancer 

classification model 

using non-

parametric 

classifier combines 

with filter feature 

selection 

 

combine 

propose 
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Figure 1.1 Scenarios leading to the research problem and research solution 

(continue) 

combine 

A new cancer classification model using non-parametric 

classifier combines with filter feature selection 

Non-Parametric Classifier 

- SVM, ANN, k-NN 

 

Filter Feature Selection 

-Relief-F, GRA, CFS 

 

Support Vector Machine 

(SVM) 

- Proposed by Vapnik (1995) 

- Has been used successfully to 

solve many problems such as 

handwritten digit recognition 

(Scholkopf et al., 1997), object 

recognition (Pontil & Verri, 

1998), speaker identification 

(Wan & Campbell, 200), breast 

cancer diagnosis (Akay, 2009).   

- Advantages: 

1. can handle a nonlinear 

classification efficiently 

2. can be useful tool for 

insolvency analysis (when the 

data are not regularly distributed) 

3. provide a good out-of-sample 

generalization if the parameters 

are appropriately chosen 

Traditional Grey Relational 

Analysis (GRA)  

- Proposed by Deng (1989) 

- Has been successfully used as 

feature selection method in time 

series forecasting (Sallehuddin 

et al, 2010), predicting software 

effort (Song and Shepperd, 

2011), machining process (Mat 

Deris et al, 2013). 

- Advantages: 

1. requires less data 

2. does not rely on data 

distribution 

3. flexible to model complex 

non-linear relationships 

- Disadvantages: 

1. mostly affected by 

distinguishing rate between the 

sequences being compared 

2. the Grey Relational Degree 

(GRD) could be very 

fluctuating because of the slight 

changes in the compared 

sequences 

Improved Grey 

Relational Analysis 

(IGRA)  

- Proposed by Ip et al 

(2009) 

- Has been successfully 

used in river environment 

quality evaluation (Ip et 

al, 2009).  

- Advantages: 

1. give more precise and 

finer grading 

2. ensure that 

translational properties of 

relational degree do not 

exist  

Cancer classification model using 

Support Vector Machine classifier 

combined with Improved Grey 

Relational Analysis (IGRA-SVM) 

 

Cancer classification model using Support Vector Machine classifier 

combined with Grey Relational Analysis (GRA-SVM) 

 

combine 
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1.3  Problem Statement 

 

 

  Cancer has been one of the leading causes of death in the world.  However, it can 

be cured if it is diagnosed early.  An accurate and reliable diagnosis procedure is 

required in early diagnosis to distinguish the benign tumour and the malignant tumour.  

The common diagnostic techniques that had been used by the medical expert are lacking 

the ability to accurately classify both tumour and are depended on the decision from the 

medical expert.  Therefore, new diagnostic technique is needed in order to get a more 

accurate diagnosis on cancer. 

 

 

  Machine learning classification techniques are proven to provide excellent 

performance in cancer diagnosis.  Although classification techniques are a good choice 

in diagnosing cancer, the performance of the classifiers can be affected if they used 

irrelevant and insignificant variables.  For the purpose of getting an accurate diagnosis, 

the feature selection method is needed to remove the irrelevant and insignificant 

variables in order to select the only optimal variables to be processed by the classifier.  

However, the selection of significant variables is a big challenge in cancer classification 

since most of the data are incomplete 

 

 

  Nowadays, there are a lot of new classification model with feature selection 

approach has been implemented by many researchers for cancer classification.  Most of 

them are successfully employed either in standard data or gene expression data.  But 

none of them are applied in both types of data simultaneously.  Thus, the best 

classification model for cancer diagnosis should be the one that is more robust, can 

handle incomplete data and can achieve high percentage of correctly classified tumours 

by using only potential variables. 
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  Therefore the problem statement of this research is, 

 

“A new and robust classification model with feature selection method that is able to 

identify the optimum variables which affect the performance of the classifier in 

order to get higher percentage of correctly classified tumour” 

 

 

  The followings are the research questions that will be addressed to answer the 

above problem statement: 

 

1. How to design a new classification model? 

2. How to find the least and the most important variables that affect the 

classifier performance?  

3. How to find the optimum variables that can signify the whole pattern in 

cancer data in order to sustain high percentage of correctly classified tumour? 

4. How to identify the efficiency of the proposed classification model?  

5. Can the proposed classification model perform better than the individual 

models and the existing classification models with feature selection 

approach? 

 

 

  These research questions will be answered through the experimental results 

obtained during this study.  
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1.4  Research Aim 

 

 

  The aim of this research is to propose an accurate and robust feature selection 

approach for cancer classification that is able to provide better percentage of correctly 

classified tumour by using only potential variables which can influence the classifier 

performance in diagnosing cancer data.  

 

 

 

 

1.5  Research Objectives 

 

 

  This study is conducted to achieve the above aim and the following objectives:  

 

1. To propose Grey Relational Analysis (GRA) feature selection for cancer 

classification using Support Vector Machine (SVM) classifier in order to 

identify the potential variables to distinguish between benign tumour and 

malignant tumour. 

2. To improve Grey Relational Analysis (GRA) feature selection by 

implementing Improved Grey Relational Analysis (IGRA) feature selection 

for cancer classification using Support Vector Machine (SVM) classifier. 
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1.6  Research Scope 

 

 

  The scope of this research is limited to the following: 

 

1. The research only focuses on two types of cancer data which are standard 

cancer data (breast cancer dataset and liver cancer dataset) and gene 

expression cancer data (prostate cancer dataset and ovarian cancer dataset).  

2. The classifier used in this research is a Support Vector Machine (SVM) 

classifier. 

3. The approaches used for feature selection are Grey Relational Analysis 

(GRA) method and Improved Grey Relational Analysis (IGRA) method. 

 

 

 

 

1.7  Significant of the Study 

 

 

  The main problem in medical diagnosis is to obtain the correct diagnosis result.  

Even though there are many medical experts around the world, most of them cannot give 

the exact and accurate diagnosis of any cancer disease.  In addition, some of the 

commonly used diagnostic techniques are time consuming and do not have high 

diagnostic capability.  One of the ways to solve the problems is by using machine 

learning classification techniques such as the proposed classification models that can 

help in early detection of all types of cancers and reduce the mortality rate caused by 

cancer.  Based on the literature review, there are many classification models have been 

develop in order to classify cancer data.  However, none of them have been tested in two 

different types of cancer data which are standard dataset and gene expression dataset. 

Thus, it can be said that the previous classification models are not robust enough because 
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it has no ability to classify different types of cancer data.  Therefore, the proposed 

classification models, GRA-SVM and IGRA-SVM are developed to satisfy the needs of 

an accurate, robust and reliable classification model that can be applied in various types 

of cancer data.   

 

 

 

 

1.8     Organization of the Thesis 

 

 

This section describes how this thesis is organized. There are seven chapters 

include in this thesis. The first chapter (Introduction) described the background of the 

research problems and justification of the proposed feature selection approaches.  The 

research aim, objectives, scope and significances are also expressed in this chapter. 

Next, Chapter 2 which is the literature review of this study presents the overview about 

cancer disease, the limitation of using common diagnostic tools for cancer diagnosis, the 

advantages of machine learning classification techniques, feature selection approach and 

the advantages of using feature selection approach in classification models.  The selected 

techniques used in this study are also discussed. 

 

 

The third chapter, Research Methodology, defines the operational framework of 

the study and describes each process or step that involve in the study.  The datasets 

employed and the performance evaluation tools used are also discussed in this chapter.  

Chapter 4 gives details about the combination process of GRA-SVM classification 

model and the classification results obtained by the proposed GRA-SVM classification 

model in classifying four cancer datasets.  Chapter 5 details out the explanation on 

development and integration of IGRA-SVM.  The classification results of the proposed 

classification model are also presented. 
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Chapter 6 (Result Evaluation and Validation) gives detail on the evaluation and 

validation of the proposed GRA-SVM and IGRA-SVM results of four different types of 

cancer datasets.  The evaluation process are done in two categories; the comparative 

performance between both proposed classification models with standard SVM 

classification model and the comparative performance of the proposed  classification 

models with the previous studies. The validation process of the proposed classification 

models are done by using significant test. Finally, Chapter 7 (Discussion and 

Conclusion) discusses the findings and contributions from this study.  Future directions 

of the research are also mentioned. 

 

 

 

 

1.9     Summary 

. 

 

This chapter provides a brief introduction to the nature and contribution of the 

thesis.  It provides the problem background, explanation of the problem domain, outlined 

the problem statement, the aim and objectives of this study.  The scope of the study is 

also mentioned to set the boundary of the research.  The significance of the study is also 

stated.  Finally, thesis organisation concludes with an overview of the contents of the 

thesis.  Next chapter presents the literature of the study, problem investigation and 

guideline in order to find the solution of the problem. 
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