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ABSTRACT 

 

 

 

The brain is the most important organ of the human body. It has a 

complicated structure, and a precise segmentation of brain cerebral tissues plays an 

important role for tumor detection. Since the manual segmentation is tedious and 

time-consuming, automatic segmentation becomes a more attractive subject to most 

researchers. Recently, many automatic segmentation methods have been proposed 

using clustering algorithms. Nonetheless, there are some remaining issues: noisy 

images and local optima. This study proposes a hybrid method by combining two 

clustering methods: FCM-FPSO and IFCM-PSO. In this research, a Gaussian filter is 

first applied as a pre-processing step to remove noises. Then, the enhanced image is 

segmented using a modified clustering method called Improved Fuzzy C-Means 

(IFCM). In IFCM, besides the target pixel intensity, the distance and intensity of the 

neighbours of the target pixel are used as the segmentation parameters. The presence 

of these parameters are helpful in case of the segmentation of noisy images. In order 

to prevent IFCM from falling into local optima, Fuzzy Particle Swarm Optimization 

(FPSO) is used to improve the parameter initialization step. FPSO is initialized by 

using a random membership function. The hybrid method is applied on thirty-one 

MRI brain tumor images collected from MICCAI 2012. The experimental results 

revealed that the F1-Measure of 79.98%, obtained by proposed hybrid method, is 

higher than that of the recent segmentation methods. 
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ABSTRAK 

 

 

 

Otak adalah organ yang paling penting dalam tubuh manusia. Ia mempunyai 

struktur yang rumit, dan segmentasi tepat otak tisu serebral memainkan peranan yang 

penting untuk mengesan tumor. Segmentasi manual adalah sangat rumit serta 

memakan masa oleh yang demikian, segmentasi automatik menjadi subjek lebih 

menarik kepada kebanyakan penyelidik. Baru-baru ini, terdapat banyak kaedah 

segmentasi automatik dicadangkan menggunakan algoritma kelompok. Walaupun 

begitu, terdapat beberapa isu yang tertinggal diantaranya adalah seperti; kekaburan 

imej dan optima tempatan. Kajian ini mencadangkan kaedah hibrid dimana ianya 

adalah menerusi gabungan dua kaedah berkelompok, iaitu FCM-FPSO dan IFCM-

PSO. Menerusi kajian ini, penapis Gaussian akan digunakan sebagai langkah awal 

untuk menghapuskan hingar. Seterusnya, imej baru yang telah diperbaiki 

dibahagikan dengan menggunakan kaedah kelompok diubahsuai atau lebih dikenali 

sebagai Improved Fuzzy C-Means (IFCM). Dalam IFCM, selain keamatan sasaran 

piksel, jarak dan intensiti piksel jiranan sasaran digunakan sebagai parameter 

segmentasi. Kehadiran parameter ini adalah membantu dalam kes segmentasi imej 

hingar. Dalam usaha untuk mencegah IFCM daripada menjadi optima tempatan, 

Fuzzy Particle Swarm Optimization (FPSO) digunakan untuk meningkatkan langkah 

parameter pengawalan. FPSO adalah dimulakan dengan menggunakan fungsi 

keahlian rawak. Kaedah hibrid digunakan pada tiga puluh satu imej MRI otak 

bertumor yang diambil daripada MICCAI 2012. Menerusi kaedah yang dicadangkan, 

Keputusan eksperimen menunjukkan bahawa F1-Measure menghasilkan nilai yang 

lebih tinggi iaitu 79.98%, dan ianya adalah lebih tinggi daripada kaedah segmentasi 

terkini.  
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CHAPTER 1  

 

 

 

INTRODUCTION 

 

 

 

1.1 Overview 

 

 

Image processing is composed of numerous program areas such as 

compression, enhancement, detection, feature extraction, restoration, scaling, 

segmentation, and so on. Image segmentation is used in many applications like 

medical imaging, locating objects in satellite images, face recognition, traffic control 

systems, and fingerprint recognition. With the latest improvement in medical 

imaging experiments, the medical images are going to be one of the most reliable 

standards in the case of diagnosis, treatment planning and evaluation of the diseases. 

Medical imaging includes locating tumors and other pathologies, measuring tissue 

volumes, etc. 

 

 

Magnetic Resonance Image (MRI) generally is a strong, robust and yet an 

influential visualization system for allowing the images of internal anatomy to be 

developed in a least interferences and harmless approach (Brown and Semelka, 

2011). In specialized medical training, MRI is utilized to tell apart pathologic tissue 

via regular tissue, specifically for brain related disorders. The MRI brain tumor 

segmentation is really an essential procedure for medical treatment, monitoring of 

therapy, efficacy validation of radiation and drug treatments, and revising the 

variances between healthy and unhealthy subjects (tumors). Specifically in brain 

tumors, the act of segmenting involves splitting regular brain tissues for instance 
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gray matter, white matter and cerebrospinal fluid from abnormal tissues like active 

tumors, edema, and also Glioma. 

 

 

Automated MRI brain tumor segmentation is a complicated challenge 

especially when it’s along with depreciating factors such as intensity inhomogeneity 

and noise (Sikka et al., 2009). Partial volume effect, intensity inhomogeneity and 

noise provide a complex challenging task for MRI brain tumor segmentation. Most 

of the current segmentation techniques emphasis on only one or two of these 

artifacts. In case of emergency problems and some critical medical situations, an 

increased care has been paid on brain tumor segmentation leading to deliver more 

accuracy in tumor detection value and also to reduce the execution and calculation 

time of the segmentation in MRI images. This chapter contains a brief introduction to 

the problem in automatic brain tumor segmentation and methods that worked on it. 

Afterward, the questions, objectives and scope of the study will be discussed.  

 

 

 

1.2 Background of the Study 

 

 

Presence of lesions or tumors in brain cortex is a critical problem in medical 

treatment field. In case of this problem, the need of detecting tumors and lesions in 

medical images is most important concern and make of using a robust and fast 

algorithm to detect these inhomogeneity is more considerable topic. In this regard 

many detection algorithms have been proposed and these methods will be discussed 

in literature review. Most of the existing methods are operative and effective but they 

have weaknesses in their results. It’s so important to consider that MRI brain tumor 

segmentation in a fast, robust and accurate method is the challenging issue. 

 

 

A wide range of brain tumor segmentation methods have already been 

suggested. Nevertheless, generally there is absolutely no regular segmentation 

method which may generate acceptable outcomes with regard to almost all image 

resolution programs. Very frequently, techniques tend to be improved in order to 
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provide with particular the image techniques like MRI. In common, segmentation 

methods are separated into several main categories (Pham et al., 2000; Farag et al., 

2005): 

 

 Methods based on thresholding 

 Methods based on region of interest 

 Methods based on clustering, and 

 Model-based Methods 

 

 

Nabavi et al. (2001) applied a region growing method with regard to 

segmentation of brain tumor MRI images. The proposed method included the 

technology of statistical classification in order to discrete the image into diverse 

classes of tissues on the base of the signal intensity value. Lakare and Kaufman 

(2000) released the Modified Region Growing Method (MRGM) that is using to be 

able to eliminate the partial volume effect as well as to include gradient info for 

much more precise border recognition and stuffing holes happened right after 

segmentation. Watershed programs have been extensively utilized within brain tumor 

segmentation. Dam et al. (2004) carried out segmentation by making use of multi-

scale watershed transformation. They introduced an interactive technique with regard 

to T1-MRI brain tumor segmentation. 

 

 

Another sort of segmentation technique is actually dependent on clustering 

techniques. Pixel classification is usually dependent on gray level images, and the act 

of segmentation may be carried out within a one-dimensional feature space. Wu et al. 

(2007) has proposed a color-based technique for MR brain images using K-Means 

algorithm to find the tumor pixels in the images. After converting the gray image to a 

color image, they have used K-Means clustering and histogram-clustering in order to 

distinguish normal brain tissues from tumor tissues. Ain et al. (2010) has proposed a 

robust system for brain tumor diagnosis as well as for brain tumor region extraction. 

Initially, the proposed method has used Bayes classification to identify the tumor 

from the MRI images. 
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In numerous circumstances, this is not really simple to figure out if perhaps 

the pixel ought to fit in to the region or not. This particular is due to the fact that the 

features to figure out homogeneity might not have keen changes at region borders. In 

order to relieve the scenario that the pixel have to fit in to the region or not, fuzzy set 

idea can easily be released in to the segmentation procedure. Fuzzy C-Means (FCM) 

clustering is an well-known method in the image segmentation field based on 

unsupervised methods by pixel classification, especially in the situation of 

segmentation of brain tumors (Supot et al., 2007). 

 

 

Szilagyi et al. (2003) suggested a new method for segmentation of MRI brain 

tumors which starts with original FCM and Bias-Corrected Fuzzy C-Means 

(BCFCM) algorithm. The proposed method delivers segmented brain images with 

enhanced quality in a fast mode. Cai et al. (2007) introduced a novel rapid and strong 

FCM platform for image segmentation: Fast Generalized Fuzzy C-Means (FGFCM) 

clustering method of integrating local spatial as well as grey information. FGFCM 

proposed a new feature in the algorithm as a local similarity quantity to assurance 

both noise-immunity and detail-preserving for image. Shen et al. (2005) have 

proposed an Improved Fuzzy C-Means (IFCM) method to segment MRI brain 

tissues. To improve the performance of the segmentation, they used a neighborhood 

attraction, based on the relative location and features of neighboring pixels. 

 

 

There are many researches based on using PSO as an optimization step to 

improve clustering algorithms like K-Means and Fuzzy C-Means. The clustering 

algorithms like FCM are very sensitive to initial parameters. The algorithm may lead 

to fall into the local optima, if the initial values are not selected properly. To 

overcome these kind of weaknesses, which results that the FCM algorithm cannot 

reach the global optimum solution, the using of Particle Swarm Optimization (PSO) 

as an optimization method has been introduced. 

 

 

Li and Shen (2010) proposed the FCM clustering method based on 

Hybridized Particle Swarm Optimization (HPSO). In their study, the PSO is used to 

find the initial centroids of the clusters. Forouzanfar et al. (2010) used Genetic 
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Algorithms (GA) and PSO to figure out the best value associated with level of 

attraction. In the study, they mentioned that GAs are finest at getting a close 

optimum solution however they have problems to discover a strict solution, while 

PSOs improve the search to find an optimum solution. In another study, Izakian and 

Abraham (2011) proposed a hybrid fuzzy clustering method called FCM-FPSO. The 

proposed method improved the merits of both FCM and PSO algorithms by 

combination of traditional FCM with the Fuzzy PSO algorithm. In the case of noisy 

MRI images, the efficiency of FCM will be reduced. Forghani et al. (2007) presented 

a method called IFCM-PSO which is using PSO to compute two parameters in order 

to improve performance of improved FCM (IFCM). Simulation results demonstrated 

effectiveness of the new proposed in the case of segmentation for noisy MRI images. 

 

 

In this regard, this thesis focuses on an automated brain tumor detection and 

segmentation system that improves detection and visualization of brain tumors from 

Fluid Attenuated Inversion Recovery (FLAIR) images. In terms of the enhancement 

of the segmentation, this research will focus on an image enhancement process using 

Gaussian Filter. To achieve that goal, improved Fuzzy C-Means algorithm will be 

used in order to find better FCM initial parameters, such as membership function 

matrix and center of cluster, an improved intelligent optimization algorithm FPSO 

will be utilized. In other words, the purpose of this research is to apply a combination 

of two popular algorithms namely Fuzzy C-Means and PSO to achieve a fast, robust 

and accurate tumor segmentation. 

 

 

 

1.3 Problem Statement 

 

 

Manual segmentation and analyzing the MR brain tumor images by 

radiologists is reliable, but with no doubt it is tedious, time-consuming, highly 

subjective and impractical in today’s medical imaging diagnosis where large 

numbers of images are taken for a single patient. Thereby, in recent years many 

efforts have been done to introduce an effective and reliable framework which is 
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useful for automatic brain segmentation but there is still no versatile framework in 

this field. 

 

 

As it already discussed in previous section, so many researches have been 

done in order to making use of FCM to segment the medical images and detecting 

the location of tumors. Nevertheless, generally there are some problems in these 

approaches. One of them is that the traditional FCM is usually suffering fall into 

local optima. So, the problem is preventing FCM to fall into local optima. Another 

problem in case of noisy images is that, the traditional FCM method is not more 

efficient. Then, finding a proper way in order to improve the performance and 

accuracy of the FCM can be a really interesting research area. FCM is not 

considering intensity of neighborhoods in order to categorizing the pixels into 

clusters. Another problem is that to propose a better approach in terms of considering 

number of neighbors to cluster the pixels. 

 

 

According to this brief description, there are some primary issues considered 

here: 

 

i. How to increase the accuracy of the system for MRI brain tumor 

image segmentation in order to considering pixels neighborhood? 

ii. How to prevent FCM from falling into local optima using an 

optimization algorithm? 

iii. How efficient is the improved Fuzzy C-Means method with using 

Fuzzy Particle Swarm Optimization to prepare most valuable and 

reliable segmentation? 

 

 

 

1.4 Research Aim and Objectives 

 

 

The project aims to examine the use of Fuzzy Particle Swarm Optimization 

during initializing parameters of improved Fuzzy C-Means clustering algorithm 
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which are the initial fuzzy membership function and subsequently the number of 

centroids of the defined classes. 

 

 

This research aims to accomplish these objectives: 

 

i. To hybrid IFCM and FPSO in order to increase the accuracy of brain 

tumor segmentation. 

ii. To validate the results of the method by using “Ground Truth” images 

that collected from MICCAI 2012. 

iii. To evaluate the efficiency of the method in terms of accuracy using 

F1-Measure parameter. 

 

 

 

1.5 Scope of the Study 

 

 

This project involves the following scope: 

 

i. The hybrid method applied on 31 brain tumor images including 19 

real data and 12 simulated data from MICCAI 2012 Challenge on 

Multimodal Brain Tumor Segmentation (Menze et al., 2012). 

ii. Since the images are needed to be enhanced, a pre-processing step 

will be applied on the images using Gaussian filter. 

iii. Improved Fuzzy C-Means method will be used along with an 

intelligent optimization method Fuzzy PSO in order to accomplish 

automatic brain tumor segmentation in MRI images. 

iv. Since the focus of the research is on increasing the accuracy in FCM 

clustering algorithm, the execution time evaluation is beyond the 

study. 

v. The performance of the hybrid method in terms of accuracy will be 

analyzed by comparing the results with two past proposed methods 

which are IFCM-PSO (Forghani et al., 2007) and FCM-FPSO 

(Izakian and Abraham, 2011). 
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vi. The hybrid method will be implemented on windows environment 

using MatLab 2013b v8.2. 

 

 

 

1.6 Significant of the Study 

 

 

As it already mentioned before, there is still no reliable framework to 

segment automatically brain tumors from medical images. All the previous studies 

suffering from increasing the execution time and high average error rate. This 

research and some other studies related to this subject area are so important because 

in the scientific organization, whether on medical or computer science, detecting the 

abnormal lesions or tumors in the human body is the vital concern. Brain tumor 

detection is also more important than other part of the body. As a result, achieving to 

an effective, and reliable method to segment and subsequently detect the lesion or 

tumor position in brain could be hopeful and useful improvement on the medical 

science industry. 

 

 

 

1.7 Thesis Organization 

 

 

The thesis is prepared into five chapters. The first chapter presents the 

introduction of the research, background of the study, problem statement, objectives 

of the study, the aims of the research, scope and the significant of the study. In 

chapter two, previous and related works on brain tumor segmentation will be 

discussed. The literature review is about existing techniques for brain tumor 

segmentation for MRI images. In chapter 3 the research methodology will be 

explained. The experimental results will be presented and discussed in chapter 4. 

And finally, conclusions, limitations of the work and future work will be addressed 

in chapter 5.  
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