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ABSTRACT 

 

 

Machining processes has been used widely in manufacturing industry and 

manufacturers have realized the important of these processes to improve the 

machining performance that would lead to an increase in production. However, one 

of the problems identified is how to minimize the values of machining performance 

in terms of surface roughness (Ra), tool wear (VB) and power consumption (Pm). To 

provide better machining performance, it is essential to optimize cutting parameters 

which are cutting speed (V), feed rate (f) and cutting time (T). This research has 

developed a hybridization technique using particle swarm optimization (PSO) and 

Levy flight labeled as Levy flight particle swarm optimizer (LPSO) aimed at 

optimizing the cutting parameters to obtain minimum values of machining 

performance for a specific machining performance such as turning process. The 

simulation results obtained were compared with particle swarm optimization (PSO), 

regression analysis (RA), response surface method (RSM), artificial neural network 

(ANN) and support vector regression (SVR) and validated using regression model, 

analysis of variance (ANOVA) and determination of optimum level for each 

machining performance. The results showed that the LPSO could minimize the 

values of Ra, VB and Pm nearly 95% in comparison to the other research techniques 

listed in this research. The LPSO technique could minimize the values of machining 

performance substantially for the manufacturing industry. 
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ABSTRAK 

 

 

Proses pemesinan telah digunakan secara meluas dalam industri pembuatan 

dan pengeluar telah menyedari kepentingannya dalam proses ini untuk meningkatkan 

prestasi pemesinan yang akan membawa kepada peningkatan dalam pengeluaran. 

Walau bagaimanapun, salah satu masalah yang dikenal pasti adalah bagaimana untuk 

meminimumkan nilai-nilai prestasi pemesinan dari aspek kekasaran permukaan (Ra), 

pemakaian mata alat (VB) dan penggunaan kuasa (Pm). Untuk memberikan prestasi 

pemesinan yang lebih baik, adalah sangat penting untuk mengoptimumkan parameter 

pemotongan iaitu kelajuan pemotongan (V), kadar suapan (f) dan masa pemotongan 

(T). Kajian ini telah membangunkan satu teknik gabungan menggunakan particle 

swarm optimization (PSO) dan Levy flight (LF) yang dilabelkan sebagai Levy flight 

particle swarm optimizer (LPSO) bertujuan mengoptimumkan parameter 

pemotongan untuk mendapatkan nilai minimum untuk prestasi pemesinan tertentu 

seperti proses melarik. Keputusan simulasi yang diperolehi dibandingkan dengan 

particle swarm optimization (PSO), regression analysis (RA), response surface 

method (RSM), artificial neural network (ANN) dan support vector regression 

(SVR) dan disahkan dengan menggunakan model regresi, analisis varians (ANOVA) 

dan penentuan tahap optimum untuk setiap prestasi pemesinan. Hasil kajian 

menunjukkan bahawa LPSO mampu mengurangkan nilai-nilai Ra, VB dan Pm hampir 

95% berbanding dengan teknik-teknik penyelidikan lain yang disenaraikan dalam 

kajian ini. Teknik LPSO mampu mengurangkan nilai-nilai prestasi pemesinan secara 

ketara bagi industri pembuatan. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 This chapter is an overview of the research conducted in this field of 

machining. The topics discussed are the background of the study, problem statement, 

objectives, scopes and contributions of the study. 

 

 

1.1 Background of Study 

 

  Machining has recently gained attention from manufacturers as the growing 

consumer demand is rising from day to day. Manufacturers have begun to realize the 

importance of the use of machines because they are capable of increasing production 

as well as speeding up production time. With the increasing advancement in 

technology, the development in machining technology has evolved to be more 

sophisticated and begun to fulfill the needs of the various industries. .  

  

  Basically, machining is defined as a process of material removal which is in 

the form of chips from a workpiece. Machining can be divided into two categories of 

machining which are conventional and non-conventional. Conventional machining is 

the application of a sharp tool used for turning, milling and grinding that would 

mechanically cut away small chips of any material. On the other hand, non-

conventional machining involves advanced technologies using chemicals. Examples 
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of non-conventional are abrasive water jet (AWJ), electrochemical machining (ECM) 

and electric beam machining (EBM). 

 

  In computer science, researchers have identified and determined that the 

machining process can be optimized and be modeled to facilitate the requirements of 

manufacturers. Many techniques have been introduced to solve the machining 

process problem faced by manufacturers. There are two main concerns with regards 

to machining which are modeling and optimization and they have been become the 

foci among researchers interested in machining. According to Zain et al. (2011), 

modeling in machining is a process of estimating the potential minimum or 

maximum value of machining performance while optimization is process of 

estimating the optimal solution of cutting parameters that would lead to the minimum 

or maximum value of machining performances.  

 

  Researchers have carried out many studies to improve machining 

performance by applying various techniques. The primary purpose of machining 

optimization is to estimate the values of machining performance while optimizing the 

cutting parameters. For machining performances in terms of surface roughness, 

production cost and operation time, achieving the minimum value has become the 

priority. However, the maximum value of machining performance is needed when it 

involves rates involving material removal and wear and tear of tools. This research 

focused on optimizing the cutting parameters and minimizing the machining 

performance. 

 

  Many computational techniques applied for optimization and modeling such 

as genetic algorithm (GA) (Onwubolu and Kumalo, 2001; Quiza Sardiñas et al., 

2006; Palanisamy et al., 2007), particle swarm optimization (PSO), support vector 

machine (SVM) (Kadirgama et al., 2012; Çaydaş and Ekici, 2012; Wang et al., 

2013), artificial neural network (ANN) (Zuperl and Cus, 2003; Cus and Zuperl, 

2006; Muthukrishnan and Davim, 2009) and simulated annealing (SA) (Asokan et 

al., 2003; Chen and Tsai, 1996; Wang et al., 2004) that have been introduced by 

many researchers. These techniques have been widely used and are established and 



3 

well-known among the researchers. Lately, other techniques such as Levy flight 

(LF), artificial bee colony (ABC), cuckoo search (CS) and firefly algorithm (FA) 

have been applied to solve the optimization problems where the characteristics of the 

algorithm are inspired by the behaviors of animals and insects. 

 

  One of the ways to solve the optimization problem is the particle swarm 

optimization (PSO) method. However, this research has expanded the PSO by 

applying hybridization. The aim of hybridization is to achieve better performance of 

the machining process. In this research, the hybridization of PSO and Levy flight is 

introduced. The experimental details of using proposed Levy flight particle swarm 

optimizer (LPSO) to determine and analyze the optimal cutting parameters are 

described in the later sections. The optimal cutting parameters considered in this 

study with regards to machining performance would be surface roughness (Ra), tool 

wear (VB) and power consumption (Pm). The summary of the background of study is 

shown below (Figure 1.1): 
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Figure 1.1: Summary of the background of study 

 

 

1.2 Problem Statement 

 

  Problems identified in the turning process are how to minimize surface 

roughness, tool wear and power consumption. Thus, the matter that should be 

addressed is how to optimize the parameters involved in this process. Many factors 

affect the accuracy of the experimental results if a conventional machine is used. One 

Machining 

-Increase production volume 

-Speed up production time 

In computer science, the problems 

can be solved by using: 

-Optimization 

-Modeling 

 

The establised and well-known 

techniques: 

-Genetic algorithm (GA) 

-Particle swarm optimization (PSO) 

-Support vector machine (SVM) 

-Artificial neural network (ANN) 

-Simulated annealing (SA) 

 

Other techniques that have been 

applied inspired by behavior of the 

animals and insects: 

-Levy flight (LF) 

-Artificial bee colony (ABC),  

-Cuckoo search (CS) 

-Firefly algorithm (FA) 

 

Hybridization 

Proposed technique in this research: 

Levy flight particle swarm optimizer is 

introduced (LPSO) 
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of the factors is the level of expertise of the machinist who uses the machine in the 

turning process. According to Aggarwal and Singh (2005), a machinist’s experience 

plays a major role but sometimes it is difficult to maintain the optimum values for 

each experiment. In addition, the other important issue is how to determine the 

machining performance. Because of these issues, it is a challenge to achieve optimal 

machining performance. Besides that, there are many cutting parameters that need to 

be optimized. The process is made more complex due to the fact that changing the 

value of one of the cutting parameters will affect the value of the other cutting 

parameters. Following that, the changes would affect the machining performance 

which could either improve or worsen. In a turning process, it is an important task to 

select the cutting parameters to achieve a high machining performance. Usually, the 

experts determine the desired cutting parameters based on their experience or by 

using a handbook. However, using these modes of judgments does not ensure that the 

selected cutting parameters would produce the optimal machining performance.  

 

  In this research, an optimization technique has been applied to determine 

optimal cutting parameters that would lead to minimum machining performances. 

The particle swarm optimization (PSO) technique has been chosen to solve the 

problems discussed in the previous sections in this chapter. The selection is based on 

the considerations that PSO is easy to understand and implement. For these reasons, 

PSO has been rapidly developed and widely used in many other fields besides 

machining. The literature review (Section 2.7) in chapter elaborates the application 

PSO in the turning process. Some of the applications of PSO are in milling process 

(Deepak, 2011; Hsieh and Chu, 2013; Zuperl et al., 2007) and drilling process 

(Yingzhuo and Wanhai, 2013; Bin and Min, 2012; Gaitonde and Karnik, 2012). 

 

  PSO has many advantages when used to solve continuous optimization 

problems because of its simplicity, convenience, fast convergence and fewer 

parameters (Chen et al., 2011) making PSO suitable to be applied in this research. 

However, the particles in PSO are easy to be trapped into a local optimum (Chen et 

al., 2011). This occurs because of the direction of the swarm movement in the design 

space that is based on the history of the best position of an individual particle. 

        and the best particle in the entire swarm       . This information generates 
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a velocity vector indicating a search direction towards a promising location in the 

search space which not efficient for         and         to locate the global 

optimum (Kalivarapu et al., 2009). Previously, there are several previous works on 

PSO done by researchers (Pan and Zou 2013; Cheng et al., 2011; Yuanbin et al., 

2011) to solve this problem using other techniques. However, this research proposed 

the hybridization approach known as Levy flight particle swarm optimizer (LPSO). 

Although there are several previous studies  (Chen et al., 2011; Chen et al., 2012; Li 

and Deng, 2013; Gang et al., 2011; Husselmann and Hawick, 2013) on the 

hybridization of particle swarm optimization with Levy flight but the researchers 

applied different values of Levy index,    and skewness parameter,    based on their 

own research. According to Chechkin et al. (2008), the parameters of    and     play 

a major role in Levy stable distribution. However, in this research, the proposed 

Levy flight particle swarm optimizer (LPSO) applied a value of Levy index,      

which the Levy distribution has a simple analytical expression namely Cauchy 

distribution (Barthelemy et al., 2008) because, it would be easier to apply the Levy 

flight in PSO. The Cauchy distribution also has thick tails that would enable it to 

generate considerable changes more frequently than the Gaussian distribution 

(Vesterstrom and Thomsen, 2004).  This would prevent  the particles in PSO from 

being trapped  in the local optima and to find the optimal cutting parameters for 

estimating the minimum values of surface roughness (Ra), tool wear (VB) and power 

consumption (Pm) so that the objectives can be achieved. A summary of the problem 

statement is shown in Figure 1.2. 
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Figure 1.2: Summary of the problem statement 

 

  The previous sections in the chapter have illustrated how the background and 

the scope of machining process could be optimized and the research questions to 

address the highlighted issues are stated below: 

 

i) What are the ways to solve the problems in machining that would minimize 

the values of surface roughness (Ra), tool wear (VB) and power consumption 

(Pm)? 

ii) How can the problems in the existing technique be solved to improve the 

performances of surface roughness (Ra), tool wear (VB) and power 

consumption (Pm)? 

 

 

 

Problems 

-Minimize machining performances: surface  

  roughness (Ra), tool wear (VB) and power  

  consumption (Pm) 

-Optimize cutting parameters: cutting speed (V),  

  feed rate (f) and cutting time (T) 

 

Constraints 

-Level of expertise of machinist 

-Determination of machining performance 

-Determination of optimal cutting parameters 

 

Solution 

Optimization technique: particle swarm optimization (PSO) 

Weakness of PSO: particles are easy to trap into local optimum 

Hybridization: particle swarm optimization (PSO) with Levy flight 

(LF) 
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1.3 Aim 

 

The aim of the research is to identify the minimum values of surface 

roughness (Ra), tool wear (VB) and power consumption (Pm) in a turning process 

using the hybrid Levy flight particle swarm optimizer (LPSO). 

 

 

1.4 Objectives 

 

  Based on the problems and the research questions discussed in the previous 

section, the objectives of this study are given as follows: 

 

i) To develop PSO for estimating the minimum values of surface roughness 

(Ra), tool rate (VB) and power consumption (Pm). 

ii) To develop a hybridization of LPSO for minimizing surface roughness (Ra), 

tool rate (VB) and power consumption (Pm) value. 

 

 

1.5 Scopes 

 

The scopes of this research are: 

 

i) Machining process involved is the turning process classified as conventional 

machining. 

ii) Machining performances to be optimized are surface roughness (Ra), tool rate 

(VB) and power consumption (Pm). 

iii) Cutting parameters are cutting speed (V), feed rate (f) and cutting time (T). 

iv) Dataset of turning process is from Gupta (2010). 

v)  Results of experiments are compared using regression analysis (RA), 

response surface method (RSM), artificial neural network (ANN) and support 

vector regression (SVR). 
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1.6 Significance of Research  

 

  This study  analyzed the performance of the proposed LPSO which is a 

hybridization of PSO and Levy flight (LF) technique to minimize the value of 

machining performances which are surface roughness (Ra), tool wear (VB) and power 

consumption (Pm). The results of the proposed LPSO were compared with other 

techniques to assess the effectiveness of the proposed technique in estimating the 

value of surface roughness (Ra), tool wear (VB) and power consumption (Pm). The 

proposed LPSO is considered as a new perspective in machining research for 

estimating machining performance and optimizing cutting parameters. 

 

 

1.7 Contributions 

 

  Contributions of this study are divided into two categories which are in the 

areas of machining and artificial intelligence. 

 

i) Machining operations 

This research contributes to the field of machining operations in turning 

process by identifying ways to minimize machining performances for surface 

roughness (Ra), tool wear rate (VB) and power consumption (Pm). 

ii) Artificial intelligence 

The proposed hybrid Levy flight particle swarm optimizer (LPSO) is a 

technique that has not been explored previously by others researchers 

involved machining. Thus, the experimental findings using this technique can 

provide substantial discoveries aimed at machining optimization. 

 

 

 

 

 

 



10 

1.8 Summary 

 

  This chapter provides an initial overview of why and how the research was 

conducted. The discussed topics included the background of study, problem 

statements, objectives and scopes of the study which have been discussed in this 

chapter. Besides that, the contributions of the study are also highlighted. In Chapter 

2, the literature review of the research has been discussed. 
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