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ABSTRACT 

 

 

 

Nowadays, coated materials are widely used due to their excellent properties 

especially for the hardness performance. The hardness of coated tools is determined by the 

coating process parameters. Traditionally, optimization to obtain the best coating 

performance of the parameters in a coating process was done by trial and error approach. 

However the traditional approach has raised issues with regards to cost and customization. 

In this research, these two issues were addressed by using a computational intelligence 

approach to develop a model for predicting the output responses in order to identify the 

optimal parameters used in coating process. Previous studies have shown that this 

approach was successfully adopted for optimization purpose in many types of domains. 

However, it was not yet applied in the coating process domain. Thus, two methods from 

computational intelligence approach were applied, namely Support Vector Machine 

(SVM) and Artificial Neural Network (ANN). The comparisons of the performances of 

the developed models were conducted based on predictive performance measurements 

such as percentage error, mean squared error (MSE), co-efficient determination (R
2
), and 

model accuracy and complexity. The results showed that, SVM obtained better predictive 

performances and less complicated in comparison to other prediction models. As a 

conclusion, SVM has demonstrated its capability in predicting the hardness performance 

of coating process and outperformed the other models. Besides that, the model is a 

promising alternative tool for coating process optimization as compared to the traditional 

approach.  
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ABSTRAK 

 

 

 

Bahan bersalut kini digunakan secara meluas kerana mempunyai ciri-ciri yang 

amat baik terutamanya dari sudut prestasi kekerasan. Kekerasan bahan bersalut adalah 

dipengaruhi oleh parameter tertentu dalam proses salutan. Secara tradisional, 

pengoptimuman untuk mendapatkan prestasi salutan yang terbaik berdasarkan parameter 

proses salutan adalah melalui kaedah cuba jaya. Walau bagaimanapun, pendekatan ini 

mempunyai kekangan dari segi kos dan proses suai padan. Dalam kajian ini, kedua-dua isu 

ini ditangani dengan menggunakan pendekatan kepintaran perkomputeran untuk 

membangunkan satu model bagi meramalkan respon output dalam usaha mengenalpasti 

parameter yang paling optimum untuk digunakan dalam proses salutan. Kajian lepas 

menunjukkan bahawa pendekatan ini telah diterima pakai secara meluas untuk tujuan 

pengoptimuman dalam pelbagai jenis bidang. Walau bagaimanapun, pendekatan ini masih 

belum diaplikasikan dalam bidang proses salutan. Oleh itu, kajian ini mengaplikasikan dua 

kaedah daripada pendekatan kepintaran perkomputeran, iaitu Support Vector Machine 

(SVM) dan Artificial Neural Network (ANN). Perbandingan prestasi model yang telah 

dibangunkan dilakukan berdasarkan peratusan kesilapan, mean squared error (MSE), co-

efficient determination (R
2
), ketepatan dan kompleksiti model. Hasil daripada kajian ini 

menunjukkan bahawa, model SVM memberikan ramalan yang lebih baik dan modelnya 

lebih mudah berbanding model ramalan lain. Kesimpulannya, model SVM berupaya 

dalam meramalkan prestasi kekerasan proses salutan yang lebih baik berbanding model 

lain. Disamping itu, model ini boleh dijadikan sebagai pendekatan alternatif untuk 

pengoptimuman proses salutan berbanding dengan pendekatan tradisional. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Introduction 

 

 

Nowadays, coated material is widely used due its excellent properties in producing 

high quality surface. One particular study undertaken by Tuffy et al. (2004) indicated that 

coated tool’s wear performance is forty times better than uncoated tools. A coating is a 

covering that is applied to the surface of an object, usually referred to as the substrate. In 

many cases coatings are applied to improve surface properties of the substrate, such as 

appearance, adhesion, wettability, corrosion resistance, wear resistance, and scratch 

resistance. The performance of the coated tool has been proven in wear mechanism (Bhatt 

et al., 2010), hardness and adhesion (Jianxin et al., 2008) and tool life (Su et al., 2004) 

tests. The findings promise prolonged tool life, and enable the implementation of 

minimum liquid lubrication to reduce cost of coolant which makes up 16% to 20% of 

manufacturing cost (Sreejith and Ngoi, 2000). Also it contributes to minimizing the 

environmental impact of discarded cutting fluid (Byrne and Scholta, 1993). 
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A large variety of techniques and methods are used in coating industry, such as 

chemical vapour deposition, physical vapour deposition, chemical and electrochemical 

technique, and spraying. In coating manufacturing, there are two main issues that need to 

be addressed in the coating process: cost, and customization. The challenge is to ensure 

both reasonable costs and high efficiency of treatment. These factors should be well-

addressed as they directly affect the cutting tool market value (Bradbury and Huyanan, 

2000). Besides the equipment maintenance, other factors that lead to high machining costs 

are material usage, labor, and the number of trial-and-error experiments. 

 

 

With the help of recently developed computational-intelligence based approaches, 

we can make excellent predictions of the coating process in an effort to maximize 

efficiency, thus creating a more valuable product. 

 

 

To predict and determine future values is a very difficult task. Catfolis (1996) has 

said that prediction of the future has always fascinated mankind due to the possible 

benefits of this knowledge. In prediction, modeling plays a very important role when 

trying to understand the various issues. According to Chai (2006), modeling can comprise 

into two categories: statistical modeling and intelligent modeling. Nowadays, intelligent 

models such as the Artificial Neural Network (ANN), Fuzzy Logic (FL), and Support 

Vector Machine (SVM) have become the main focusing points for researchers in 

prediction.  

 

 

SVM is a relatively new machine learning technique that can provide a new model 

to improve prediction accuracy (Jae and Young, 2005). Developed by Vapnik (1998), 

SVM is gaining popularity due to its many attractive features and excellent general 

performance on a wide range of problems (Jae and Young, 2005). SVM, which is 

technique that embodies structural risk minimization (SRM) principles that theoretically 

minimizes the expected error of a learning machine, reduces the problem of over-fitting. 

Although SVM has been used in applications for a relatively short time, this learning 

machine has proven to be a robust and competent algorithm for both classification and 

regression in many disciplines. The success of SVM in prediction techniques is evident 

from several previous research papers in electricity load forecasting (Chen et al. 2004), 
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stock price forecasting (Bao et al. 2004), traffic speed prediction (Vanajakshi and Rilett, 

2004) and travel time series prediction (Wu et al. 2004). In bankruptcy prediction, Jae and 

Young (2005) have proven that SVM can outperform other techniques (Mutiple 

Discriminit Analysis (MDA), Logitic Regression Analysis (Logit) and Back- Propogation 

NN (BPNN)). Therefore there is evidence that SVM is the best technique in prediction in 

general, and that it can successfully compete with other techniques. The performance of 

this SVM needs to be explored in this research in order to prove the successes of this 

particular model in prediction. 

 

 

ANN is an intelligent model comparable to SVM that is also widely used. ANN is 

a mathematical model or computational model that tries to simulate the structure of 

biological neural networks, consisting of an interconnected group of artificial neurons and 

processes information which uses a connectionist approach to computation. In addition, an 

ANN is an adaptive system that changes its structure based on external or internal 

information that flows through the network during the learning phase. Neural networks are 

modeling tools that can be used to model complex relationships between inputs and 

outputs or to find patterns in data. Unlike the SVM, ANN uses Empirical Risk 

Minimization (ERM) to minimize the errors of the training data. Since 1980, ANN 

techniques have been successfully applied in many predictions, especially in flood 

forecasting (Bazarterseen et al. 2003; Chang and Chen, 2003; Lekkas et al. 2005 and etc). 

 

 

The capability of these two method (i.e. SVM and ANN) in the coating process not 

yet been evaluated. As mentioned by Nisbet et al. (2009), the different methods work best 

for different database. Therefore, the aim of the research is to study the advantages of 

these two methods (i.e., SVM and ANN) in predicting the best parameter values that lead 

to the best (i.e. highest quality) hardness performance in TiA1N coating process. The 

significant of this study is that it will provide an alternative to the traditional approach 

which is more time consuming and expensive. Thus, we expect that the outcome of this 

study will contribute to overcoming that problem. 
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1.2 Problem Background 

 

 

In the high-speed machining process, cutting tools are consistently dealing with 

high temperatures and localized stress at the tool tip. During this process, the cutting tool 

might slides off the chip along the face and rake the newly cut workpiece surface 

(Kalpakjian and Schmid, 2006). These conditions will cause a tool wear, reducing the 

cutting tool performances, affected the quality of parts and deteriorate the tool life. 

Therefore, cutting tool surface hardness is very important in order to reduce the tool wear. 

In addition, tool wear condition has a direct effect on the economics of cutting operations, 

final product quality and process reliability (Yen et al., 2004). 

 

 

The hardness performance can be improved by applying thin film coating on the 

cutting tool. The main purpose of this is to improve the tool surface properties while 

maintaining its bulks properties. One of the general coating processes in applying thin 

films is Physical Vapor Deposition (PVD) magnetron sputtering. 

 

 

In PVD magnetron sputtering, coating process parameters like sputtering power, 

substrate bias voltage, substrate temperature, gas pressure and turntable speed all influence 

the coating performance. Jiang et al. (2010) investigated the effects of gas pressure on 

coating performance, which is argon pressure on the microstructure and magnetic 

properties of amorphous TbFe magnetostrictive films. Other papers investigating the 

influencing of coating process parameters on coating performance were done by Nizam 

(2010), Sun et al. (2010) and Zhou et al. (2009). Details on this research are discussed in 

Chapter 2. Consequently, these conditions have caused limitations- especially in the 

process of applying the coating technology in a new area. In addition, it requires trial and 

error experiments in order to determine the suitable parameter values of the process with 

the material used, so that the optimal coating performance could be obtained. Trial and 

error experiments have resulted in an increase of coating process costs and a more intricate 

process of customization in coating. 
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Therefore with the help of computational approaches currently under development, 

the coating process can be performed in different ways with the same objective. Using 

computational approaches in estimating coating process performance, there is no need to 

conduct traditional lab experiments, and hence the costs can be reduced. Jaya et al. (2011) 

proposed the hybridization RSM-Fuzzy method for prediction of hardness coating. This 

model has achieved 88.49% accuracy compared to the actual data (i.e., experiments-based 

data). Moreover, from literature survey, we found that another computational-based 

approach such as SVM and ANN could be applied for the same purpose and might 

produce higher accuracy.  

 

 

To the best of our knowledge, no such work has been conducted to explore the 

ability of SVM and ANN in this particular matter. Thus, this research aims to explore 

other computational approaches, namely SVM and ANN, to predict the values of 

parameters of hardness in the coating process. Titanium Aluminum Nitride TiA1N coating 

process will be considered in this research as a case study. At the end of this study, the 

prediction results from SVM and ANN will be compared with the hybrid RSM-Fuzzy 

method. The comparison analysis will be based on predictive performances and 

complexity of the models. In terms of predictive performance evaluation, four 

performance metrics will be applied, which are: percentage error, mean square error 

(MSE), co-efficient determination (R
2
) and model accuracy. 
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1.3 Research Question 

 

 

There are two fundamental questions that need to be answered through this study: 

 

i. What is an alternative approach applied in this study for estimating 

 the coating process in order to find the best hardness performance in 

 TiA1N coating process? 

ii. Can the SVM and ANN approaches applied in this study improve the 

 performance achieved by the hybrid RSM-Fuzzy method proposed by 

 Jaya et al. (2011)? 

 

 

 

1.4 Objective 

 

 

The main objectives of the study are: 

 

i. To develop an SVM model for predicting the hardness performance of 

tools following the coating process. 

ii. To develop an ANN prediction model for predicting the hardness 

performance of tools following the coating process. 

iii. To compare the performances of the models with the RSM-Fuzzy model, 

and recommend the best model that could be used to predict the hardness 

performance of coated tools. 
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1.5 Scopes 

 

 

The scopes of the study are: 

 

i. Hardness has been selected as a function of coating performance, which 

will be evaluated in this study. 

ii. Coating process parameters considered in this study are sputtering power, 

substrate bias voltage and temperature. 

iii. The Titanium Aluminum Nitrite (TiAlN) is the material used for coating 

process and considered as case study. 

iv. Comparison of performance predictions are based on four evaluation 

matrix predictive values: percentage error, mean square error (MSE), co-

efficient determination (R
2
), and accuracy. 

v. Measurement of hardness is in gigapascal (GPa). 

vi. Experimental data of hardness TiA1N coating is based on Jaya et al. (2011) 

 

 

 

1.6 Thesis Organization 

 

 

This thesis is organized into seven chapters. Chapter 1 presents the introduction of 

the study, problem background, problem statement, scope, objectives and the importance 

of the study. Chapter 2 explains the previous work and the literature review of existing 

techniques for support vector regression (SVM), Neural Network (NN) techniques in 

coating prediction. The methodology of the project is discussed in Chapter 3. Chapters 4 

and 5 explain the prediction model development using SVM and ANN. Chapter 6 

discusses numerical analysis and results. Finally, the conclusions and suggestions for 

future work are discussed in Chapter 7. 
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1.7 Summary 

 

 

The coating process plays an important role in determining the performance of 

coated tools. To produce a good coating, a selection of values of coating process 

parameters including sputtering power, substrate bias voltage, and substrate temperature 

are taken into consideration. However, there are no standard methods that can be used to 

determine the parameters values accurately. The traditional approach of investigating the 

process through lab experiments requires much more time and money, because multiple 

lab experiments must be undertaken to obtain the optimal values. In contrast, a researcher 

has demonstrated that a computational-based approach such as the hybridization RSM-

Fuzzy method can be applied to predict the best parameter values of hardness of coating 

process. This model has achieved 88.49% accuracy compared to the actual data (i.e. 

experiments-based data). In addition, from literature survey, we found that other 

computational-based approaches such as SVM and ANN could be applied for the same 

purpose, possibly producing better accuracy. Thus, this research has been conducted to 

explore the possibility that the proposed SVM and ANN techniques may achieve better 

predictive performance compared to the hybrid RSM-Fuzzy method. 
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