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ABSTRACT 

Since the number of transistors on Integrated Circuit (IC) double every 18 

months, the scaling of a device in nanometer is highly required. Due to the 

downscaling process, conventional Metal-Oxide-Semiconductor Field-Effect-

Transistors (MOSFET) lead to the short-channel effects, gate-leakage current and 

interconnect problem. Hence, the introduction of new structure of Silicon Nanowire 

(SiNW) is necessary and crucial. The SiNW had been proven with an ability to 

effectively suppress the off-leakage current with its Gate-All-Around (GAA) 

configuration when compared to the planar MOSFET. In addition, the SiNWFET 

will be considered to be a promising structure for ultra-CMOS devices to the extend 

device approaching their downsized limits. This research is accomplished by 

developing a model of Silicon Nanowire (SiNW) with GAA configuration in 

MATLAB. In order to evaluate the performance in digital level, HSPICE is used to 

create its own library based on developed model. The on-current as high as  5μA can 

be achieved by the n-type SiNWFET while p-type SiNWFET can reach until same 5μA 

saturation current. Both models show symmetrical results indicating a fast switching 

inverter. These models are utilized to build some logic gates in order to further 

examining their performance in circuit application. The SiNWFET performance is also 

compared with the nano-MOSFET for benchmarking. The finding of this research is 

that the SiNWFET model is proven to have better performance than  nano-MOSFET 

in terms of Power Delay Product and Energy Delay Product. Furthermore, when Tox 

is reduced and Rsi, Nd and L are increased, a significant device improvement of 

SiNWFET GAA is attained. This is achieved by having reduced Drain Induced 

Barrier Lowering, Subthreshold Slope and providing higher Ion/Ioff current ratio by 

improving the parameter in the device modelling of SiNWFET. 
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ABSTRAK 

Sejak bilangan transistor pada Litar Bersepadu (IC) berganda dalam tempoh 

18 bulan, penskalaan peranti dalam nanometer amat diperlukan dan menjadi sangat 

penting. Disebabkan proses penskalaan, Logam Konvensional Transistor Kesan 

Magnet Semikonduktor Oksida (MOSFET) boleh membawa kepada kesan saluran 

pendek, get-arus bocor dan masalah penyambungan. Oleh itu, pengenalan bahan baru 

seperti Silikon Nanowire (SiNW) adalah perlu dan menjadi sangat penting. SiNW 

telah dibuktikan berupaya secara efektif menyekat berlakunya kebocoran luar dengan 

Get-Sekitar-Semua (GAA) apabila dibandingkan dengan MOSFET satah. Di 

samping itu, SiNWFET dipertimbangkan menjanjikan pencapaian yang lebih baik 

bagi ultra-CMOS peranti apabila penskalaan dilakukan. Penyelidikan ini 

membentangkan model Silikon Nanowire (SiNW) dengan konfigurasi GAA 

menggunakan MATLAB. Bagi tujuan menilai prestasi di peringkat digital, HSPICE 

digunakan bagi membuat kod tersendiri berdasarkan model yang dibina. Arus litar 

boleh mencapai sehingga 5μA bagi jenis-n manakala jenis-p boleh mencapai 5μA bagi 

kedua-dua keadaan arus tepu. Kedua-dua model menunjukkan kepantasan SiNWFET 

sebagai litar logik inverter. SiNWFET kemudian dibandingkan dengan logik get untuk 

menilai prestasi dalam aplikasi litar. Untuk tujuan perbandingan, model ini digunakan 

untuk membina beberapa get logik dalam membuat perbandingan dengan nano-

MOSFET. Hasil yang ditunjukkan daripada kajian ini adalah model SiNWFET 

dibuktikan mempunyai prestasi yang lebih baik berbanding nano-MOSFET dalam 

Hasil Darab Kuasa and Hasil Darab Tenaga. Selain daripada itu, apabila Tox and Rsi 

dikurangkan, Nd dan L ditingkatkan, prestasi SiNWFET GAA meningkat. Ini kerana, 

pengurangan Parit Galakan Penyekat Penurunan dan Kecerunan Ambang yang lebih 

baik serta nisbah Ion/Ioff  arus yang tinggi meningkatkan prestasi dengan variasi 

parameter dalam model SiNWFET.  
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

In the computing world, packing more transistors onto a chip leads to higher 

speeds. It may also give rise to more functions integrated within a system. According to 

the famous Moore’s Law, the number of transistors it is possible to fit on an Integrated 

Circuit (IC) will double every 18 months, as the feature size of each transistor shrinks to 

half of its original size (Moore, 1975). Figure 1.1 shows that the numbers of transistors 

in Intel processor increased exponentially throughout the years from 1960 to 2010 

(Gunther, 2007). 

A wide variety of studies have been undertaken to develop techniques involving 

increasing the population of transistors on a single integrated circuit. This aim is realised 

through shrinking the transistors as well as increasing the number of transistors. 

Complementary Metal-Oxide-Semiconductor (CMOS) device scaling and 

miniaturization are some of the approaches used to design such devices and achieve 

Moore’s Law. Furthermore, the microelectronic industry is scaling down in 

nanotechnology, in which the size of transistor decreases from the micrometre scale into 

nanometre scale. 
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Figure 1.1: Exponential increase of the transistors in Intel processor per year according 

to Moore’s Law (Gunther, 2007).  

The challenge that engineers and scientists face is that the performance of 

silicon-made transistors will be affected when the transistor size enters the nanometre 

region, due to disturbances known as ‘short channel effects’. Coupling these 

consequences with an increase in the cost of production will provide difficulties. In an 

effort to change the perspective of scaling down transistor size, scientists introduced 

new materials and new structures as alternatives for silicon-made gate channel CMOS, 

or introduced new CMOS architectures to replace common CMOS.  
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Figure 1.2: MOSFET structure trend (ITRS, 2011). 

In this research, the use of new structure known as Silicon Nanowire Field-

Effect Transistor (SiNWFET) is being explored. According to the International 

Technology Roadmap Semiconductor (ITRS) 2011, depicted in Figure 1.2, planar 

MOSFET are predicted to be obsolete and will be replaced by advanced MOSFET 

structures. The implementation of nanowire FET will be considered to replace existing 

FinFETs MOSFET structures that have the ability to reduce the short-channel effect 

(SCE) and have greater gate control (Iwai et al., 2011). 

 



4 

 

 

 

The introduction of new structures for nanotransistors is of utmost importance to 

overcoming downscaling problems. Nanowire transistors could keep Moore’s Law alive 

by perfecting ways to produce Gate-All-Around Nanowire devices. Current research on 

the use of Gate-All-Around Nanowire Transistors in a new design is being explored, 

where the transistor channel is made up of an array of vertical nanowires. The gate 

surrounds all the nanowires, which improves its ability to control the flow of current as 

shown in Figure 1.3. In this research, the used of platinum-based source and drain 

contacts sits at the top and bottom of the nanowires (Hellemans, 2013). 

 

Figure 1.3: Gate-All-Around Nanowire Transistor Arrays (Hellemans, 2013). 

Furthermore, the development of a compact model of the device is essential to 

examine the performance of the device on a circuit level, namely in a digital system. 

Device modeling plays a vital role in the characterization and application of SiNWFET. 

The ultimate goal of this thesis is to establish a comprehensive SiNWFET device model. 
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Following that, the performance of SiNWFET devices is predicted through 

simulation, and subsequently, the potential of SiNWFET in a digital system can be 

explored in terms of speed, power consumption, and feature size. In addition, device 

performance can be improved by using certain methods, which are shown in Table 1.1 

(Wong, 2002). The challenges faced over channel scaling are physical limitations on gate 

oxide thickness, doping concentration, depletion and junction depth, as well as the 

increased complexity of fabrication for shorter dimension, as well as the presence of 

short channel effects (SCE). SCEs have caused the scaling of conventional MOSFET to 

become more difficult.  

The short channel effect includes threshold voltage (VT) reduction, increasing 

dissipation power (Pdisp), higher leakage current (IOFF) roll-off and larger drain induced 

barrier lowering (DIBL) (M. A. Riyadi et al., 2009; M. A. Riyadi, Suseno, Napiah, 

Hamid, & Saad, 2010). Threshold reduction can reduce the operating voltage and power, 

however very low VT is undesirable due to the exponentially higher leakage current and 

lower noise margin in logic applications (M. A. Riyadi et al., 2009; Saad, Riyadi, N, 

Hamid, & Ismail, 2010).  

As the channel potential of the MOSFET is controlled by all terminals, scaling 

down the channel length (L) increases the drain bias influence on the channel’s potential 

and electric field configuration that determines the device operation. The rise of drain 

controllability on the channel reduces the gate control on the channel current. These in 

turn intensify the SCEs, which may cause large off-currents through the DIBL effect. 

When the SCEs are dramatic, the drain can turn on the channel even when the gate is 

based in the off region. 
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Table 1.1: Device performances improvement opportunities (Wong, 2002).  

Source of 

improvement 

Parameters 

affected 

Methods 

Charge 

density 

1. S (inverse 

subthreshold 

voltage) 

2. Qinv at a fixed off-

current 

1. Double-gate FET  

2. Lower the operating temperature 

Carrier 

transport 

1. Mobility μeff   

2. Carrier velocity  

3. Ballistic transport 

1. Strained silicon  

2. High mobility and saturation velocity 

materials (Ge, lnGaAs, lnP)  

3. Reduce mobility degradation factors (e.g. 

reduce transverse electric field, reduce Coulomb 

due to dopants, reduce phonon scattering)  

4. A shorter channel length  

5. Lower the operating temperature 

Ensure device 

scalability to 

a shorter 

channel 

length 

1. Generalized scale 

length (λ )  
2. Channel length 

(Lg) 

1. Maintain good electrostatic control of channel 

potential (e.g. double-gate FET, ground-plane 

FET, and ultra-thin body SOI) by controlling the 

device physical geometry and providing means 

to terminate drain electric fields  

2. Sharp doping profiles, halo/pocket implants  

3. High gate capacitance (thin gate dielectrics, 

metal gate electrode) to provide strong gate 

control of channel potential 

Parasitic 

resistance 

1. Rext 1. Extended/Raised source/drain  

2. Low-barrier Schottky contact 

Parasitic 

capacitance 

1. Cjn  

2. CGD, CGS, CGB 

1. SOI - floating gate problem 

2. Double-gate FET 

 



7 

 

 

 

1.2 Problem Statement 

The downsizing of channel length in a planar MOSFET leads to several 

disadvantages, including short channel effects. Therefore, conventional device modeling 

is no longer accurate when the channel lengths reach the nanometer regime, due to the 

numerous unknown parameters. Figure 1.4 shows the transistor innovation starting from 

130nm to 22nm technology nodes. In 130nm technology node, the gate oxide leakage is 

measurable at 4 nm, and grows 10x for every ~0.4 nm gate oxide reduction. This can 

lead to gate oxide leakage increase by gate oxide reduction. Following that, in 90nm 

technology node strains have been introduced, where strain is more beneficial to PMOS 

as it is able to improve mobility. Strain is benificial, but it doesn’t solve the problem 

with gate oxide leakage. Next in 45nm node, where High-k/Metal were introduced to 

solve gate oxide leakage issues by reducing the effective oxide thickness and gate 

leakage at the same time by using high-k materials. However, Vt roll up is not stable, 

and lower performance (causing mobility degradation) and the threshold voltage roll-up 

is similar to the 65nm node. 

In 22nm node technology, gate scaling crises are overcome by a new architecture 

called multiple gate, where the scaled devices are determined by body thickness (tsi) 

instead of depletion thickness, Xd. The challenge in MOSFET scaling can be overcome 

by introduction of new materials and new structures. In this research, the focus on is 

evaluating Silicon Nanowire (SiNW) in Gate-All-Around (GAA) configuration at the 

circuit level performance. In these architectures, scaling length includes Tsi which can be 

varied independently from gate oxide thickness. 

. 
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Figure 1.4 : The transistor research timeline in Intel starting from 2005 (Jakub 

Kedzierski, 2012) 

Hence, in order to determine the efficiency of device performance at the circuit 

and logic gate level, it will be benchmarked with the nano-MOSFET, using conventional 

simulators such as SPICE. In addition, analytical expressions are required to obtain the 

Current-Voltage (I-V) of the device. 

. 
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1.3 Research Objectives 

The research focuses on the analytical analysis of Gate-All-Around SiNWFET 

and its performance evaluation. The modeling approach will be used as the reference for 

the device optimization. Matrix Laboratory (MATLAB) is used as the main platform to 

optimize and analyze the SiNWFET while HSPICE software is utilized to evaluate the 

performance of the model to be benchmarked with nano-MOSFET. On the whole, the 

objectives of the research are: 

a) To study and formulate an analytical and semi-empirical model of quasi-one-

dimensional (Q1D) Silicon Nanowire FET (SiNWFET) structure. 

b) To implement the unified-drain current SiNWFET I-V circuit model in a SPICE 

environment. 

c) To evaluate the performance evaluation of SiNWFET logic gates and benchmark with 

nano-MOSFET in terms of Power Delay Product (PDP), Energy Delay Product (EDP) 

and propagation delay, tp. 

d) To investigate the performance of SiNWFET in terms of Tox,  Rsi, Nd and L. 
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1.4 Research Scopes 

The research begins with the development of a unified-drain current model of 

Silicon Nanowire Field-Effect Transistor (SiNWFET). In this stage, the I-V 

characteristics of SiNWFET are formulated by modeling approaches found in the 

literature. Next, the circuit configuration and logic gates of the inverter are implemented 

and other simple logic gate circuits and analytical analysis for device optimization. 

Software such as MATLAB, Statistical Package for the Social Sciences (SPSS) and 

HSPICE are used as platforms to establish the research. A literature review is carried out 

in order to understand the Quantum-1-Dimensional SiNWFET device physics, their 

limitations, as well as challenges faced in modeling and simulation. 

1.5 Contributions 

An established model of SiNWFET is presented, including 1D quantum 

confinement theory as well as a quasi-one-dimensional (Q1D) system which would be 

useful in evaluating the properties of the Q1D nanowire transistor. As a result, this 

model can be used to characterize future SiNWFET structures by development of 

unified-drain current model characteristics before implementation in HSPICE. The 

SiNWFET model can be simulated in HSPICE by using our very own UTM proprietary 

library, which may also be used by other researchers to compare their models. 

SiNWFET is shown to have better Power Delay Product (PDP), Energy Delay Product 

(EDP) and propagation delay, tp, when benchmarked with nano-MOSFET. 
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1.6 Outline of Thesis 

This research aims to evaluate the performance and optimization of the 

SiNWFET model, based on digital circuit design. Literature review on the basic theory 

of MOSFET and SiNWFETs devices, which provide a foundation to this research is 

presented in Chapter 2. Methodology will be presented in Chapter 3, in which research 

activities and expected outcomes are reported. The modeling aspects of Silicon 

Nanowire (SiNWFET), whilst a small portion of this chapter discusses the definition of 

non-degenerately and degenerately doped semiconductors, unified drain-current 

characteristics, and statistical analysis of SiNWFET in term of thickness oxide (TOX),  

channel length (L) and diameter (D) of nanowire is discussed in Chapter 4. The circuitry 

and simulation of SiNWFET, it’s performance evaluation, as well as drain induced 

barrier lowering (DIBL) and subthreshold slope (SS) effects in nanowire FET is 

explained in Chapter 5.  Finally, the research works and future recommendation will be 

summarized in Chapter 6. 
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