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ABSTRACT 

 

 

 

 

Rise in water level is an important issue because it can be used as an indicator 

for flood alert. The water level of a river is dependent upon variables such as the 

month, volume of rainfall, temperature, relative humidity and surface wind. The 

main purpose of this research is to find a suitable method to predict the water level of 

Galas River in Kelantan to anticipate flood. In this research, secondary data on water 

level of Galas River was collected from the Department of Irrigation and Drainage 

Malaysia and Malaysian Meteorological Department. Some of the data were missing 

in certain months, thus these data were replaced by the use of means and linear 

regression based on the related months in other years as treatments of these missing 

data. Both these treatments were included in the methods to analyse data. Multiple 

Linear Regression (MLR), Partial Least Squares Regression (PLSR), Support Vector 

Regression (SVR) and SVR-based time series regression were used to analyse the 

data. Using the MLR analysis, multicollinearity was detected and addressed by 

applying PLSR. However, this technique which is a linear based model may not be 

appropriate in a nonlinear case such as the Galas River case. In this study, a 

nonlinear method, SVR, was applied. Besides that, SVR-based time series regression 

was proposed to cater for the time-based water level data, and to overcome the issue 

of linearity and multicollinearity. The result shows that linear regression is a better 

data treatment in SVR and SVR-based time series regressions. In addition, using 

Gaussian kernel, the results showed that these regressions have lower mean squared 

error of cross-validation as compared to MLR and PLSR.  The major finding from 

this study is that both SVR and SVR-based time series regression used to anticipate 

flood by predicting the water level is significantly better than MLR and PLSR. 
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ABSTRAK 

 

 

 

 

Kenaikan paras air adalah satu isu penting kerana ia boleh digunakan sebagai 

petunjuk untuk amaran banjir. Paras air sungai adalah bergantung kepada 

pembolehubah seperti bulan, jumlah hujan, suhu, kelembapan relative dan 

permukaan angin. Tujuan utama kajian ini adalah untuk mencari kaedah yang sesuai 

untuk meramalkan paras air di Sungai Galas, Kelantan bagi menjangka banjir. Dalam 

kajian ini, data sekunder untuk paras air di Sungai Galas telah dikumpul dari Jabatan 

Pengairan dan Saliran Malaysia dan Jabatan Meteorologi Malaysia. Beberapa data 

telah hilang pada bulan-bulan tertentu, oleh itu data ini telah digantikan dengan 

penggunaan purata dan regresi linear berdasarkan bulan-bulan yang berkaitan dalam 

tahun-tahun yang lain sebagai rawatan kepada data yang hilang ini. Kedua-dua 

rawatan data ini telah dimasukkan ke dalam kaedah untuk menganalisis data.Regresi 

Linear Berganda (MLR), Regresi Kuasa Dua Terkecil Separa (PLSR), Regresi 

Vektor Sokongan (SVR) dan SVR berasaskan regresi siri masa telah digunakan 

untuk menganalisis data. Dengan menggunakan analisis MLR tersebut, 

multikolinearan dikesan dan telah ditangani dengan menggunakan PLSR.Walau 

bagaimanapun, teknik ini merupakan model berasaskan linear yang mungkin tidak 

sesuai dalam kes tak linear seperti kesdi Sungai Galas.Dalam kajian ini, kaedah tidak 

linear, SVR, telah digunakan.Selain itu, SVR berasaskan regresi siri masa telah 

dicadangkan untuk mengatasi data paras air berasaskan masa, dan untuk mengatasi 

isu kelinearan dan multikolinearan. Hasil menunjukkan bahawa regresi linear adalah 

rawatan data yang lebih baik dalam SVR dan juga SVR berasaskan regresi siri masa. 

Selain itu, dengan menggunakan kernel Gaussian, keputusan menunjukkan bahawa 

regresi-regresi ini mempunyai puratar alat kuasa dua yang lebih rendah dengan 

menggunakan pengesahan-silang berbanding MLR dan PLSR. Penemuan utama 

daripada kajian ini ialah bahawa kedua-dua SVR dan SVR berasaskan regresi siri 

masa yang digunakan untuk menjangka banjir dengan meramalkan paras air adalah 

jauh lebih baik daripada MLR dan PLSR. 
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CHAPTER 1 

 

 

 

 

 

INTRODUCTION 

 

 

 

 

 

1.1       Introduction 

 

 

 

This chapter is divided into five main sections which will wholly summarize the 

problems and motivations underlying the research. The first section describes the 

background of problems. The next two sections explain the problem statement and the 

objectives of the study, followed by the scope, significance of the study and thesis 

organisation. 

 

 

 

1.2       Background of Problem 

 

 

 

 Floods are common phenomena which can be defined as the presence of excess 

water in a place beyond its normal limits. Floods are often cited as being the most lethal 

of all natural disasters (French et al., 1989; Alexander, 1993; Jonkman et al., 2005). The 

flooding of Malaysian rivers is mainly due to the high amount of rainfall in river basins 

because of the climate of the country which is greatly influenced by the monsoon winds. 

Peninsular Malaysia is located in South East Asia and in the equatorial latitudes. Within 

these latitudes, it receives more than 2,500 mm of rain annually and the average 

temperature is 27 degrees Celsius. Peninsular Malaysia faces two monsoon winds 

seasons which are the Southwest Monsoon, from late May to September, and the 
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Northeast Monsoon, from November to March. The Northeast Monsoon brings in more 

rainfall compared to the Southwest Monsoon. It is noted that the rainfall over different 

states in Peninsular Malaysia vary from each other. 

 

 

The worst flood in Malaysia was recorded in 1926 which has been described as 

having caused the most extensive damage to the natural environment. Subsequent major 

floods were recorded in 1931, 1947, 1954, 1957, 1967, and 1971. Kelantan, Terengganu, 

Pahang, Johor, and Kedah are among the states in Malaysia that suffer the most from 

floods during monsoon season. Kelantan is a state in the east coast of Peninsular 

Malaysia that has never missed a flooding event, which occurs between October and 

March every year during the northeast monsoon period. The citizens in Kelantan always 

suffer from the floods since the water overflows to the areas adjoining the rivers, lakes, 

or dams. 

 

 

A flood affects many of the engineering structures such as bridges, embankments, 

reservoirs, and significantly disrupts or interferes with human and societal activities. 

Kuala Krai is one of the districts in Kelantan that is always affected by floods. Factors 

causing floods in the Kuala Krai district of Kelantan are a combination of physical 

factors such as elevation and its close proximity to the sea, apart from the heavy rainfall 

experienced during monsoon period. The severe floods all over Kelantan result from 

heavy rainfall during the north east monsoon season especially in November and 

December.  

 

 

Some of the flood characteristics have been listed by the Department of Irrigation 

and Drainage Malaysia (DID), which are the water level, area inundation, peak 

discharge, volume of flow, and duration (Gasim et al., 2007). Moreover, there are three 

categories of critical level stages of water level: alert, warning, and danger, which were 

also identified by the Department of Irrigation and Drainage Malaysia. The river stage is 

the variable that is considered when a flood warning is issued. Five factors have been 

identified to be the variables of this research and the factors that might lead to the rising 

of water level of Galas River: (1) Months from January to December for 11 years starting 

from 2001 to 2011, (2) Monthly mean of rainfall, (3) Monthly mean of temperature, (4) 
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Monthly mean of relative humidity, and (5) Monthly mean of wind speed. These 

predictor variables were collected from meteorological department and we want to find 

the most related predictor variables towards response variable which is water level that 

was collected from hydrological department. 

 

 

This study attempts to find an appropriate model and dominant variables for 

predicting water level in Galas River. In order to obtain the model, the study used four 

different methods which are Multiple Linear Regression (MLR), Partial Least Squares 

Regression (PLSR), Support Vector Regression (SVR), and SVR for time series 

regression. It was discovered that the original hydrological data had missing values. Due 

to the occurrence of the missing values, the four methods could be inappropriate to be 

used directly for water level prediction; therefore, data cleaning is needed to be 

performed on the hydrological data beforehand. We performed two types of data cleaning 

which are type I and type II data cleaning using mean of the corresponding months and 

linear regression with single predictor.  

 

We use MLR since it is simple regression, however, we should pay attention the 

presence of multicollinearity in the DID and MMD data. We can apply PLSR if the 

multicollinearity present, however, PLSR has more complicated procedures compared to 

MLR. It noticed that MLR and PLSR are linear methods, and we do not know that 

relation between water level and the five predictor variables are either linear or nonlinear. 

We apply SVR if the relation between those variables is nonlinear. Another advantage of 

SVR is SVR is not influenced by the present of multicollinearity. In many cases, 

however, time series based methods is more powerful compared to non-time series 

methods. Therefore, we consider to modify SVR model with DID and MMD data in the 

form of SVR-based time series regression. 
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1.2.1 Geology of Kelantan River 

 

 The Kelantan state consists of more than 25 rivers and seven major river basins, 

namely Galas, Kelantan, Golok, Semerak, Pengkalan Chepa, Pengkalan Datu, and 

Kemasin. Out of the seven, Kelantan River Basin is the largest in Kelantan (Rohasliney, 

2010). It drains a catchment area of about 12,000 km
2
 in north-east Malaysia, including 

part of the National Park, and flows northwards into the South China Sea (Rohasliney, 

2010).  The Kelantan River is about 248 km long and occupies more than 85 percent of 

the State of Kelantan. It separates into the Galas and Lebir Rivers near Kuala Krai, about 

100 km from the river mouth which means that Kelantan River is the main river while 

Galas and Lebir Rivers are the tributary rivers. For this research, the focus is on 

forecasting the water level of Galas River in Kuala Krai district. 

 

 

1.2.2 Geomorphology of Galas River 

 

For this research, we focused on two main tributary rivers which are Galas and 

Lebir Rivers in Kuala Krai, Kelantan. Table 1.1 presents the characteristics of the river 

and the main tributaries and Figure 1.1 shows the location of the study area which is 

Galas River in Kuala Krai and labeled as Galas R. in the map.  

 

Table 1.1:  The Characteristics of the Main River and the Main Tributaries 

 

 
No. Name of river Length [km] 

Catchment area [km²] 

Highest peak [m] 

Lowest point [m] 

1 Kelantan River 248 

11,900 
Mt. Korbu (2,183 m) 

2 Galas River 178 

7,770 
Mt. Setong (1,422 m) 

3 Lebir River 91 

2,430 
Cintawasa Hill (1,185 m) 
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Figure 1.1: Location of Galas River 

 

 

 

As mentioned before, five factors have been identified as related to the increasing 

of the water level of Galas River which leads to the rising of river stages in Galas River, 

Kelantan. To observe and monitor the water level in Kuala Krai area, eight hydrological 

stations were set up by the Water Resources Management and Hydrology Division. 

 

Table 1.2 shows the categories of the water level for Galas River in Kuala Krai 

that were introduced by the Department of Irrigation and Drainage Malaysia. The four 

stages are normal level, alert level, warning level, and danger level. 

 

 

Table 1.2:  The Categories of the Water Level Stages for Galas River 

 

 

Station Station Name River Basin 

Normal 

Level 

(metre) 

Alert 

Level 

(metre) 

Warning 

Level 

(metre) 

Danger 

Level 

(metre) 

5320443 
Galas River at 

Dabong 

Kelantan 

River 
28 32 35 38 
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1.3 Problem Statement 

 

 

Mostly people will suffer losses due to flooding event caused by water level 

rising. An investigation is needed to overcome this problem or as an effort to manage it 

the future. For this research, the data were taken from the Water Resources Management 

and Hydrology Division (WRMHD) in Kuala Lumpur and Malaysian Meteorological 

Department (MMD) in Selangor. 

 

However, it was found that the raw data consisted of missing values and the 

existing methods, such as MLR, PLSR and SVR might be inappropriate to be used to 

develop the prediction models using these data. Hence, it was necessary to perform data 

pre-processing to replace the missing values. There are two types of data pre-processing 

that have been executed, namely type I data pre-processing (based on the mean) and type 

II data pre-processing (based on linear regression with single predictor).  The data have 

been analysed using linear and nonlinear methods which are MLR, PLSR, SVR, and 

SVR-based time series regression.  

 

 

The MLR is the simplest model in regression analysis and widely used in many 

fields in engineering and social sciences. MLR can be used to predict the water level but 

it can be unsuitable when multicollinearity exists. Multicollinearity in DID and MMD 

data can bring harmful effects to the regression model when correlations are present 

among these predictors. The negative effects of multicollinearity can be overcome by 

applying PLSR which is often used when multicollinearity is present. PLSR has been 

paid an increasing attention nowadays as an important measure of each explanatory 

variable or predictor (Chong and Jun, 2005). However, it has limitations in its application 

since PLSR is a linear model. 

 

 

The SVR and SVR-based time series regression can be used to overcome the 

issue of linearity and multicollinearity. However, the suitable parameters and lag are 

need to be determined in both methods. Furthermore, model selection is also needed to 

obtain the best prediction model and dominant variables among the four methods. 
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1.4 Objective of Study 

 

 

The objectives of the study are: 

 

i. To deal with the issue of missing data on rainfall and water level by performing 

data cleaning. 

ii. To develop water level prediction models for Galas River using PLSR, SVR, and 

SVR for time series regression with considering the existence of 

multicollinearity. 

iii. To select the appropriate dominant variables and prediction models for water 

level using k-fold cross-validation to obtain the best model. 

 

 

 

 

1.5 Scope of Study 

 

 

 

i. The study focused on developing the algorithm for water level prediction on 

Galas River using the methods of MLR, PLSR, SVR, and SVR-based time series 

regression. 

ii. The data were collected from the Water Resources Management 

and Hydrology Division, Department of Irrigation and Drainage Malaysia (DID), 

and Malaysian Meteorological Department in Selangor (MMD). 

iii. The data consist of six variables, namely month, rainfall, temperature, relative 

humidity, surface wind, and water level. 

iv. The data covers the record on Galas River from 2001 to 2011. 

v. The monthly average of rainfall and water level from 11 years are used in order to 

predict the water level of Galas River. 

vi. Matlab software is utilised for most of the analysis in this research. 
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1.5 Significant of Study 

 

 

For this research, we studied the appropriate method to predict the water level 

based on the existing methods of Multiple Linear Regression (MLR), Partial Least 

Squares Regression (PLSR), Support Vector Regression (SVR), and SVR-based time 

series regression. However, these methods cannot be directly used when there exists the 

missing values in the original data. Hence, the appropriate measures to overcome the 

issue of missing values is needed by performing data cleaning using mean of the 

corresponding months and linear regression with single predictor. The information from 

these linear and nonlinear methods is obtained for the research to help the people in 

Kuala Krai, Kelantan to be prepared for during the monsoon seasons in the future. 

Furthermore, this research would help the government to analyse the water level patterns 

and find ways to reduce floods in Kuala Krai. The development of the models using 

nonlinear methods will give higher accuracy in predicting the water level of the river. 

 

 

 

1.6  Thesis Organization 

 

 

The following chapters will present an approach to the development of the water 

level models. Chapter 2 contains the literature review of previous researches while the 

framework of the present study and the theoretical methods of MLR, PLSR, SVR, and 

SVR-based time series regression are discussed in Chapter 3. The preliminary results are 

described in Chapter 4 and finally, the conclusion and future works are imparted in 

Chapter 5. 
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