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ABSTRACT 

 

 

 

 

Power delivery design has become important and critical nowadays especially 

at the package level, interconnect between silicon and motherboard.  It is not an easy 

task to perform power delivery analysis at package level as it could have more than 

30 power rails and it is very time consuming to validate each of them one by one at a 

time.  Resonance frequency of power delivery network is critically important to 

understand the design risk from power delivery perspective.  Inaccuracy of resonance 

frequency may result in over design and lead to increase of decoupling solution cost.  

This thesis presents a study of modeling extraction for single and multiple power 

rails by using Sigrity PowerSI (2.5D field solver) through frequency domain analysis, 

focuses on the changes in resonance frequency within each modeling case and 

recommends the appropriate way of extracting multiple power rails.  The criterion of 

modeling extraction methodology in power rails modeling especially for multiple 

power rails extraction has been proposed for unmerged power rail and merged power 

rail designs.  Time domain analysis was carried out to understand the performance of 

power delivery network base on the design target and the impact of resonance 

frequency of power delivery network.  Coupling noise effect has shown significant 

impact in merged package design through time domain analysis.  The thesis also 

reports the comparison of RL network with extracted model for unmerged and 

merged power rails design.  The generated RL model is correlated with extracted 

model in frequency and time domain analysis for unmerged package design.  It is 

also a good enough model to replace the extracted model of merged package design 

by justifying through time domain analysis.     
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ABSTRAK 

 

 

 

 

Reka bentuk penghantaran kuasa telah menjadi penting dan kritikal pada 

masa kini terutamanya di peringkat pakej, sambung antara silikon dan motherboard.  

Ia bukan satu tugas yang mudah untuk melaksanakan analisis penghantaran kuasa 

pada pakej kerana ia boleh mempunyai lebih daripada 30 landasan kuasa dan ia 

adalah sangat memakan masa untuk mengesahkan setiap daripada mereka satu demi 

satu setiap masa.  Frekuensi resonans rangkaian penghantaran kuasa adalah amat 

penting untuk memahami risiko reka bentuk dari perspektif penghantaran kuasa.  

Ketidaktepatan frekuensi resonans boleh membawa kepada kesilapan reka bentuk 

dan peningkatan kos penyelesaian nyahgandingan.  Tesis ini mengemukakan kajian 

pemodelan pengekstrakan bagi landasan kuasa tunggal dan berbilang dengan 

menggunakan Sigrity PowerSI (2.5D field solver) melalui analisis domain frekuensi, 

memberi tumpuan kepada perubahan dalam resonans frekuensi dalam setiap 

pemodelan kes dan cara yang sesuai untuk mengeluarkan pelbagai landasan kuasa 

yang disyorkan.  Kriteria pemodelan pengekstrakan dalam landasan kuasa 

pemodelan terutamanya bagi berbilang landasan kuasa pengekstrakan telah 

dicadangkan bagi landasan kuasa berasingan dan landasan kuasa bergabung.  

Analisis domain masa akan dijalankan untuk memahami prestasi penghantaran kuasa 

pangkalan rangkaian, sasaran reka bentuk dan kesan frekuensi resonans rangkaian 

penghantaran kuasa.  Gandingan kesan bunyi bising telah menunjukkan kesan yang 

ketara dalam reka bentuk pakej bergabung melalui analisis domain masa.  Tesis juga 

melaporkan perbandingan RL rangkaian dengan model yang diekstrak bagi landasan 

kuasa berasingan dan bergabung.  Tidak ada perbezaan di antara model RL dan 

model diekstrak dalam landansan kuasa berasaingan. Ia juga mencukupi untuk 

menggantikan model diekstrak dalan landasan kuasa bergabung melalui justifikasi 

dalam analisis domain masa. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1     Background of the Problem 

 

 

Cost-effective power delivery design has become an important determinant 

influencing designs nowadays, which can be achieved through comprehensive power 

delivery design.  Power delivery design has becomes critical and important in silicon, 

package and board application [1].  The market nowadays opt for novel power 

delivery design which are affordable and competitive in cost, which is a major 

challenge faced by the silicon and packaging industry.  Designing a cost effective 

and optimized power delivery design at package level is no easy task [9].   

 

 

The primary function of package is to provide mechanical support and 

electrical interconnects between silicon and motherboard.  It acts as an interconnect 

for transmitting I/O signals from the silicon to the motherboard and it also supplies 

clean power and reference voltage to the active devices on the die.  Figure 1.1 shows 

the cross section of a flip chip package which consists of bump, micro-via, plated 

through holes (PTH) and solder ball.   
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Figure 1.1  Cross section of flip chip package 

 

 

There are many analog and digital power rails at package level, in order to 

support different features set of product segments.  The package size is mainly 

determined by the number of signals, power and ground pins.  Package size and cost 

have increased to accommodate new analog and digital power rails by adding 

power/ground bumps, package power/ground pins and power planes at the package 

layers.  Package power rails are routed separately, depending on interfaces and 

voltage level, with the reason of minimizing coupling noise from other interfaces, 

which may act as aggressor.   

 

 

Power delivery analysis is required to determine the quality of power delivery 

network.  Power delivery modeling plays an important role in the overall power 

delivery analysis flow [8].  Commercial 2.5D solver is commonly used to simulate 

package power rail modeling.  Impropriate extraction methodology will result in 

inaccurate of power delivery network behaviour [2].  The quality of power delivery 

modeling is verified through frequency and time domain analysis.  Impedance profile 

and noise content are the key elements to determine the quality [11].   

 

 

Power delivery network contains all electrical and physical elements that 

form the electrical interconnect between the supply source and the individual IO 

buffers in a chip.  It comprises of the die capacitance, flip chip bumps, package 
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power planes, decoupling capacitors on the package, micro-vias and PTHs that 

connect the different power planes together.  The power and GND package pins, the 

mother board planes, mother board decoupling capacitors and voltage regulators are 

shown in Figure 1.2.  

 

 

 

Figure 1.2  Common physical components of power delivery network 

 

 

 

 

1.2      Problem Statement  

 

 

There are many approaches which aim to enable good power delivery design 

at package level.  However cost optimized design is difficult to achieve and needs a 

lot of analysis to validate it [7].  As mentioned, there are many power rails at 

package level and designers are required to perform the analysis individually, which 

is not efficient in term of the design and time to market cycle due to market 

competitiveness.  It is time consuming to perform 2.5D model extraction and to go 

through the frequency and time domain analysis on all power rails [12].  Thus, a 

simple model which is more efficient and has similar result is needed to be 

developed to represent the extraction model.  

 

 

Nevertheless, knowing the most efficient way of extracting power rails is 

important during power delivery analysis [4].  It is important to understand what the 
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required criteria are, while extracting power rails from package design.  Neglecting 

these criteria will cause inaccuracy in frequency and time domain analysis.  Thus, 

any optimization design based on this power delivery model may not be valid.  To 

date, there is no proper guide for extracting single or multiple power rails in single 

model [10].  Behaviour change in impedance profile is unknown if multiple power 

rails are extracted as a single model, which may create risk to the power delivery 

performance.  Nevertheless, there are many merged power rail designs nowadays [1].  

Coupling effect, behaviour change in frequency and time domain are not straight 

forward as compared to single and isolated design power rail [6].   

 

 

Modern electronic devices such as tablets and smartphones are getting more 

powerful and efficient. The demand in feature sets, functionality and usability 

increase exponentially and this has posed a greater challenge to the design of a power 

distribution network (PDN). Power rails merging is a popular option adopted today 

in a PDN design as the provision of numerous power rails is no longer feasible due to 

form factor limitation and cost constraint [39]. High performance smartphones and 

tablets products cycle has been shorten from one year cadence to six months or even 

three months cadence. It also leads the new product cycle especially derivative 

product cycle is even shorter although comes with less feature and lower cost.  In 

order to deliver product in short cycle to gain more market share, cost effective 

power delivery solution where power rail merging is one of it. Nevertheless, due to 

short schedule an efficient analysis method is required to analyze power rail merging.  

 

The purpose of merging power rails at package level includes 

 Improving the package design efficiency by reducing the number of 

power rails 

 Enabling smaller packages and lower number of package layers 

through lesser micro-via, PTH and package ball for cost saving 

opportunity  

 Potential decoupling sharing at silicon, package and board levels for 

cost saving.  

 Reducing possibility on adding extra voltage regulator at board level.  
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There are many benefits of merging power rail design; undeniably, but more 

challenges are expected more as compared to single power rail design.  There are 

risks of violating the noise target and introducing bad coupling noise to sensitive 

power rails.   

 

 

 

 

1.3 Objectives 

  

 

 The objectives of this project are to determine the selection criteria of power 

delivery modeling for both unmerged and merged power rails design at package level, 

and propose an efficient method for performing power delivery analysis for single 

and multiple power rails through RL model.  In this study, the RL model was verified 

through frequency and time domain analysis and was correlated with the extracted 

model.  The proposed method is hoped able to help create awareness and serve as a 

reference guideline to the power delivery community in power delivery modeling at 

package level, especially for merged power rails design.   

 

 

 

 

1.4  Scope of the Study 

 

 

The project scope included the understanding on the current power delivery 

methodology at package level.  It involved the background of package design as 

well.  Two different package power rail designs were designed, which were 

unmerged and merged power rail design.   

 

 

There were three major stages in this project, starting with package power rail 

design, followed by modeling/extraction, and then performing the frequency and 
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time domain analysis based on the models that has been created.  An improved 

modeling methodology was also established which would be used to determine the 

criterion of modeling for both single and multiple power rails.  RL model was also 

generated for comparison with the extracted model for both unmerged and merged 

power rail design.  Nevertheless, three commercial software were needed in this 

thesis, for example: Sigrity PowerSI 2.5D solver is used to extract power rail model, 

Allegro is used to design power rails layout and HSPICE is used to perform 

frequency and time domain analysis. 

 

 

Literature review is discussed in Chapter 2, which discusses the general 

overview of power delivery network, impedance profile, existing power delivery 

flow and tools that were used in the power delivery analysis.  Chapter 3 discusses the 

power delivery analysis flow that includes frequency and time domain analysis.  This 

chapter also covers the power delivery modeling cases.  Chapters 4 and 5 discuss the 

results of the frequency and time domain analysis, which contained the impedance 

profile and noise content, compared between the extracted and RL model.  The 

frequency domain contained the resonance frequency, which is a critical element in 

power delivery analysis.  The findings from this study deliver the importance of the 

selection criteria that determine the accuracy of the resonance frequency during 

power delivery modeling; neglecting it will result in inaccuracy of resonance 

frequency.  Time domain analysis was also performed to verify if the proposed RL 

model is sufficient to represent the extracted model.  Finally, Chapter 6 presents the 

conclusion of this study.   
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