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ABSTRACT 

The Prion protein (PrP) roots from a collection of diseases identified as 

transmissible spongiform encephalopathies (TSEs), which are caused by conversion of 

PrP from its normal cellular form (PrPC) to a misfolded, oligomeric isoform (PrPSc). Prion 

diseases are considered fatal and until now no known treatment has been reported. Prion 

diseases in humans are grouped based on whether they are sporadic, inherited, or acquired. 

In the case of inherited prion disease, which is also known as familial prion disease, 

abnormal prion proteins are produced through a genetic mutation. So far, about 40 point 

mutations have been discovered. The globular domain (aa125 to 228) of PrP plays a 

critical role in its folding and stability and many of pathogenic mutations are located on 

this part. V203G, Q212H and N173K are three PRNP mutations, which were reported 

recently, but it remained questionable whether the mutations were causal of the disease. 

In this research, we preformed Molecular Dynamic Simulation and structural analysis on 

the three previously mentioned unknown-disease-related mutations (V203G, Q212H and 

N173K) and prion disease related mutations V203I and Q212P as positive control for 

V203G and Q212H respectively and neutral polymorphism N171S as a negative control 

for N173K. We investigated to see how similar the unknown-disease-related mutations act 

compared to their controls, to verify whether the mutations were causal of the disease. 50 

ns of molecular dynamic simulations were performed for all mutations and wild type, 

using GROMACS 4.6.3 software and GROMS96 force field. Changes in RMSD, RMSF, 

salt bridges, secondary structure and Solvent accessible surface area were explored by 

analyzing the trajectories. The results revealed similar dynamic behavior between Q212H, 

V203G, N173K and other prion pathogenic mutations; all three under study mutations 

showed   a  decrease   in   the  protein’s   overall   stability,   an   increase   in  HB  and  HC   region  

flexibility, a major loss in salt bridges in the HA and HB region, changes in the 

electrostatic surface of PrP and made the protein more exposed to solvent, which are all 

common dynamic behaviors among pathogenic mutations.  
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ABSTRAK 

Protein prion (PrP) berasal daripada rangkaian penyakit yang dikenal pasti 
sebagai ensefalopati spongiform berjangkit (TSEs) akibat penukaran PrP daripada 
bentuk selular normal (PrPC) kepada salah lipat, isoform oligomerik (PrPsc).  Penyakit 
prion membawa kepada maut dan tiada rawatan yang diketahui dilaporkan setakat ini.  
Penyakit prion pada manusia dikelaskan kepada sporadik, terwaris, atau terperoleh.  
Dalam kes terwaris atau keturunan, protein prion tidak normal dihasilkan melalui 
mutasi genetik.  Sehingga kini, sebanyak 40 mutasi telah ditemui.  Domain globular 
PrP (aa125 hingga 228) berperanan penting dalam proses pelipatan dan kestabilannya 
di mana mutasi patogenik banyak tertumpu di bahagian ini.  Tiga mutasi PRNP yang 
baru dilaporkan iaitu V203G, Q212H dan N173K masih tidak diketahui perkaitannya 
sebagai punca kepada penyakit. Dalam kajian ini, analisis struktur secara simulasi 
dinamik molekul (MD) telah dijalankan ke atas 3 mutasi yang tidak diketahui 
perkaitannya dengan penyakit (V203G, Q212H dan N173K), mutasi terkait penyakit 
prion V203I dan Q212P, masing-masing sebagai kawalan positif bagi V203G dan 
Q212H serta polimorfisme neutral N171S sebagai kawalan negatif bagi N173K.  
Mutasi V203G, Q212H dan N173K diselidiki sejauh mana persamaannya berbanding 
dengan kawalan, bagi mengesahkan sama ada mutasi tersebut menjadi punca kepada 
penyakit.  Kesemua mutan dan jenis liar disimulasi MD selama 50 nanosaat 
menggunakan medan daya GROMOS96 pada perisian GROMACS versi 4.6.3.  
Perubahan pada nilai RMSD, RMSF, titian garam, struktur sekunder dan bahagian 
permukaan terakses pelarut disiasat berdasarkan analisis trajektori. Hasil kajian 
mendapati perlakuan dinamik adalah hampir sama di antara Q212H, V203G, N173K 
dan mutasi patogenik prion yang lain. Kesemua 3 mutasi yang dikaji menunjukkan 
penurunan kestabilan protein secara menyeluruh, peningkatan kelenturan pada 
kawasan HB dan HC, kehilangan sejumlah besar jambatan garam di kawasan HB dan 
HC, perubahan pada permukaan elektrostatik PrP yang mendedahkan lagi protein 
kepada pelarut; di mana kesemua ini merupakan ciri perlakuan dinamik bagi mutasi 
patogenik 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background of the problem  

The prion protein (PrP) roots from a collection of diseases identified as 

transmissible spongiform encephalopathies (TSEs) (Vila-Viçosa et al. 2012). 

Neurodegenerative disorders with sporadic, infectious and genetic forms are common 

diseases found in both human and animals which are caused by conversion of PrP from 

its normal cellular form (PrPC) to a misfolded, oligomeric isoform (PrPSc) (Xu et al. 

2012) (De Simone et al. 2013; Thirumalai 2013). In fact, prion diseases are misfolded 

proteins, which accumulate inside the central nervous system and produce an 

infectious disease. This has been remained a debate and is considered the main idea of 

the Prion Hypothesis, because it contrasts compared to other known infectious agents 

(virus/bacteria/fungus/parasite) which must contain nucleic acids (either DNA, RNA, 

or both). Prion diseases are considered fatal and until now no known treatment has 

been reported. Some examples of TSEs include fatal familial insomnia in humans, 

bovine spongiform encephalopathy in cattle, Scrapie in sheep, and Creutzfeldt− Jakob 

disease, Gerstmann− Sträussler− Scheinker syndrome and kuru (Vila-Viçosa et al. 

2012; Thirumalai 2013). 

PrP is monomeric and soluble in its normal cellular form, however its 

pathogenic form (PrPSc) contains a high β-structure content which may accumulate 

and form amyloid fibrils (Vila-Viçosa et al. 2012). PrPSc, resulting from the misfolding 
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of PrPC, gathers extra PrPC to form deposits of accumulated PrPSc in the affected 

individual’s   brain   (Spevacek 2012). Different causes have been proposed for the 

conversion of PrPC into PrPSc, however the mechanism of the conversion still remains 

unanswered (Vila-Viçosa et al. 2012).  

The chemical composition of amino acid sequences of PrPC and PrPSc are 

identical but their difference lies in their conformations specifically in terms of 

secondary structure (Vila-Viçosa et al. 2012). The structure of PrPSc has the tendency 

to assemble into insoluble aggregates, hence NMR spectroscopy and X-ray 

crystallography are not able to determine the structure of this protein so the structure 

still remains unresolved. According to limited number of experiments on PrPSc using 

the CD spectroscopy and Fourier transform, it was observed that compared to PrPC, 

PrPSc are less helical and consist of more β-structures. Hence, it is logical to conclude 

that in the transition from PrPC to PrPSc there exists a conversion of a-helices to β-

structures (Xu et al. 2012). PrPC’s  α-helix and β-sheet content is approximately 42% 

and 3% respectively, while PrPSc α-helix content decreases to ∼30% and its β–sheet 

content about 43% (Mishra 2010; Vila-Viçosa et al. 2012). 

PrP is located on chromosome 20 in humans and encoded in the PRNP gene, 

and it is expressed as a 254 amino acid protein, in which the first 22 amino acids are 

removed after they signal to translocate the nascent protein to the endoplasmic 

reticulum (Spevacek 2012). With the addition of a glyco-phosphatidyl-inositol (GPI) 

anchor to produce a 209 amino acid protein, PrP (amino acids (aa) 23-231), the C-

terminal 23 amino acids are cleaved (Spevacek 2012). Several structures of human PrP 

(huPrP) exist in the Protein Data Bank. Based on these data, the huPrP includes an N-

terminal region with no distinct structure (aa 23− 124) and globular domain in the C-

terminal region (aa 125− 228) composed of three α-helices (HA: aa 144− 156; HB: aa 

174− 194; HC: aa 200− 228) and short two-stranded antiparallel β-structure (S1–S2) 

(aa 128− 131 + aa 161− 164) (Figure 1.1). It has a disulfide bond between C179 and 

C214 and two Nglycosylation sites (N181 and N197). The N-terminal region is 

characterized by octarepeats (aa 51− 91) that seem to develop a structure in the 

presence of Cu2+ or other metals (Vila-Viçosa et al. 2012). 
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Figure 1.1 Schematic of the prion protein. The flexible N-terminus contains the 

octarepeat domain. The structured C-terminal domain contains two  β-strands (arrows) 

and three α  –helices (boxes). The gray circles stand for the N-linked glycosylations. 

The C-terminus is with a GPI anchor, which connects the protein to the cell surface 

(Spevacek 2012) 

Currently, Prion diseases in humans are grouped based on whether they are 

sporadic, inherited, or acquired. In majority of cases prion disease are sporadic; 

meaning, they develop spontaneously with no known reason. On the other hand, prion 

disease is rarely inherited due to a faulty gene, and less often acquired through medical 

procedures, transfusions, or contaminated food. 

In the case of inherited prion disease, which is also known as familial prion 

disease, abnormal prion proteins are produced in the body caused by a genetic mutation 

(fault in the gene that codes for the prion protein). The abnormal prion proteins are 

predisposed to undergo the change in shape, which induces the production of rogue 

proteins. 

It is known that conformation transition from PrPC to PrPSc is induced with the 

replacement of some amino acids in PrP. Human familial prion diseases are associated 

with about 40 point mutations of PRNP, and most of these mutations are located in the 

globular domain of the protein (Guo, Ren, et al. 2012b). This purely structural 

rearrangement between PrPC and PrPSc provides an opportunity for investigation from 

a dynamics point of view. Experimentally, it is unfeasible to distinguish the actual 

conformational transition or folding/unfolding process between these two states. As 

mentioned before the hydrophobic nature of PrPSc prohibit successful structure 

determination by x-ray crystallography, or NMR spectroscopy, molecular dynamic 
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(MD) simulation has become one of the few available methods for elucidating PrPC to 

PrPSc conversion (Shamsir et al. 2008). 

MD simulation has obvious advantages to study the structural conversion, as it 

cannot only provide plentiful dynamic structural information but also model the 

required environment for conversion easily. Actually, this method has been applied 

successfully to explore how the mutations affect the conversion between PrPC and 

PrPSc (Guo, Ning, et al. 2012a). 

1.2 Objectives of the Study  

The purpose of this study is to: 

1) Identify prion mutations as controls for Q212H, V203G and N173K 

mutations. 

2) Run molecular dynamics simulation for the mutations and their controls  

3) Analyse the effects of mutations on the protein structure, stability and 

intermolecular interactions. 

1.3 Scope of the Study  

Applying 50 ns of MD simulations in order to investigate three unknown-

disease-related PrP mutations (Q212H, V203G, N173K) and an additional MD 

simulation run for three controls consisting of two pathogenic mutations (Q212P, 

V203I) taken as positive controls and a neutral polymorphism (N171S) as negative 

control and a MD simulation of WT as a basis for comparison of all mutations. 
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1.4 Problem Statement 

By running MD simulation for the identified pathogenic mutations (positive 

controls) and polymorphism (negative control) in human PrP along with the WT PrP 

we could explore the effect of mutations on WT PrP. By this means, MD simulation 

could be performed on Q212H, V203G and N173K (the unknown-disease-related 

mutations) and the results could be compared with the controls. This will help us to 

explore the dynamic similarity between Q212H, V203G, N173K and prion pathogenic 

mutations. 

1.5 Significance of the Study  

Mutations in prion protein gene can produce diverse clinical phenotypes. 

Hence, diagnosing whether a mutation in prion protein is causal of the disease, 

becomes difficult and need further examination, which is time consuming and costly. 

By using MD simulation, present study explores mutations that are not known whether 

they are pathogenic. This research could serve as a step forward to acquiring a more 

rapid, economical and reliable approach for a definite distinction of non-pathogenic 

PrP mutations from pathogenic mutations. 
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