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ABSTRACT 

Deoxyribonucleic acid (DNA) biosensor is a powerful tool that utilizes the 

DNA hybridization procedures to detect the presence of bacterial and virus diseases 

through the use of highly conserved DNA sequences. Label-free and fully integrated 

biosensor has favored the developing of a low cost Point-of-Care (POC) device. 

Recently several studies on electrical detection of biomolecules that is based on the 

changes in electrical double layer capacitance of the bio-functionalized electrode 

surface have been proposed. Such systems harness the unique impedance values i.e. 

permittivity of the biomolecules. However, this method does not present enough stable 

and accurate electrical signal since the double layer formed at the electrode-electrolyte 

interface is an imperfect insulator. In capacitive sensing, the occurrence of ion 

conduction through the permeable DNA layers can cause leakage by discharging the 

charge on the double layer capacitance. Therefore, a more efficient detection method 

is desirable. This work demonstrates an impedimetric DNA detection circuit using 

standard Complementary Metal-Oxide Semiconductor (CMOS) technology. In this 

approach, the electrical changes are defined by computing both capacitance and 

resistance of the electrode-electrolyte interface. A fully integrated biosensor circuit 

design consists of an on-chip microelectrode, a current-to-voltage converter (IVC) and 

two quadrature phase double-balanced Gilbert cell mixers using 0.18 µm Silterra 

CMOS process is carried out. The Direct Current (DC) output voltage of the detection 

circuit is used to estimate the magnitude and phase of the measured admittance. The 

IVC shows a transimpedance gain of 166 dB and an input referred noise current of 

332 fA/√Hz in 10 kHz bandwidth. The total power dissipation from 1.8 V DC supply 

is 97.2 µW and the size of the layout area is approximately 4485 μm2. The developed 

biosensor has great potential for future array integration due to its low power and 

flexibility in miniaturization.  
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ABSTRAK 

Biosensor asid deoksiribonukleik (DNA) adalah satu alat berkuasa yang 

menggunakan prosedur penghibridan DNA untuk mengesan penyakit bawaan bakteria 

dan virus melalui penggunaan jujukan DNA yang sangat terpelihara. Biosensor 

bersepadu sepenuhnya serta bebas label telah menggalakkan pembangunan peranti 

point-of-care (POC) berkos rendah. Baru-baru ini, beberapa kajian terhadap 

pengesanan elektrik biomolekul berdasarkan perubahan dalam kapasitan elektrik dua 

lapisan pada permukaan elektrod bio-fungsian telah dicadangkan. Sistem ini 

memanfaatkan nilai impedan unik iaitu ketelusan biomolekul. Walau bagaimanapun, 

kaedah ini tidak menunjukkan signal elektrik yang stabil dan tepat kerana lapisan dua 

elektrik yang terbentuk di permukaan elektrod-elektrolit bukanlah penebat yang 

sempurna. Dalam penderiaan kapasitan, konduksi ion berlaku melalui lapisan DNA 

dan menyebabkan kebocoran secara pembebasan cas terhadap kapasitan dua lapisan. 

Oleh yang demikian, kaedah pengesanan yang lebih efisien sangat dikehendaki. 

Kajian ini mendemonstrasikan litar pengesanan impedan DNA menggunakan 

teknologi standard oksida logam pelengkap semikonduktor (CMOS). Dalam kaedah 

ini, perubahan elektrik ditentukan dengan mengira kedua-dua kapasitan dan rintangan 

di permukaan elektrod-elektrolit. Rekabentuk litar biosensor bersepadu adalah terdiri 

daripada mikroelektrod, penukar arus voltan (IVC), pencampur sel Gilbert dengan dua 

fasa kuadratur seimbang berganda menggunakan proses 0.18 μm Silterra CMOS. Nilai 

keluaran arus terus (DC) litar pengesanan digunakan untuk membuat anggaran 

magnitud dan fasa lepasan yang diukur. IVC menunjukkan 166 dB gandaan 

transimpedans dan input arus hingar yang dirujuk adalah 332 fA/√Hz dalam 10 kHz 

jalur lebar. Jumlah pelesapan kuasa daripada bekalan DC 1.8 V adalah 97.2 μW dan 

keluasan litar pelan adalah kira-kira 4485 μm2. Litar biosensor yang telah dibangunkan 

mempunyai potensi yang tinggi untuk integrasi pada masa depan kerana penggunaan 

kuasa yang rendah dan fleksibiliti dalam pengecilan. 
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INTRODUCTION 

1.1  Introduction 

Biosensor is an analytical tool used to convert the detected biological signal 

from the interaction of biological component with the analytes into an electric signal. 

However, these detected biological signals are indigestible and require various 

detection schemes to extract the relevant information. 

1.1.1 Components of the Biosensor  

First, the components of the biosensor are introduced in this section. Based on 

the principle of specific biological recognition measurements, biosensors can be 

divided into three parts as shown in Figure 1.1:  

 

i. Sensitive biological elements which able to interact specifically with an 

analytes. These biological elements can provide us useful information. For 

instance, physical properties such as temperature and pressure or biological 

and chemical entities such as ion, bacteria, etc.  

ii. The transducer from biosensor can be defined as a device to transfer or 

translate a detected biological signal into another signal form, which is 

readable and quantified output [1]. These signals can be in the form of 

electrical, mechanical, optical, magnetic or thermal.  
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iii. Signal processor is responsible in processing the transformed signal from the 

transducer in a user-friendly way for information storage, display, analyzing 

and transmission.  

 

Figure 1.1 Typical architecture of a biosensor. 

1.1.2 Characteristics of the Biosensor 

To build a high-performance biosensor has been always a motivation for 

scientific and industrial research. Some of the performance characteristics are 

described as follows [2]:  

 

i. Sensitivity: The change in output of sensor to per unit change in analytes 

concentration. For instance, in a linear sensor system, the sensitivity is the 

slope of the calibration curve. 

ii. Selectivity: The ability of the sensor only reacts to the specific target analytes 

and no reaction to the other interfering chemical. For an ideal sensor system, 

the selectivity is infinity, which mean it just react to a particular target analytes. 
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iii. Range: The concentration range over which the sensitivity of the sensor is 

good and is also called as dynamic range or linearity. 

iv. Response time: The time required for the sensor to indicate 63% of its final 

response due to a step change in analytes concentration. Many factors can 

affect the system response time such as the sensor’s response time and the 

transducer’s response time. 

v. Detection limit: The lowest concentration of the analytes to which there is a 

measurable response. 

vi. Lifetime: The time period over which the sensor can be used without 

significant deterioration in performance characteristics. This parameter is 

particularly important for biomedical sensor systems since the failure of the 

sensor system might put the patient in a dangerous situation. 

vii. Stability: Characterizes the change in its baseline or sensitivity over a fixed 

period of time. High stability allows the long-term monitoring into a specific 

substance. 

 

Other than the performance characteristics listed above, there are some other 

characteristics that still need to be put into consideration when designing a sensor 

system which are size, cost and power consumption. The main goal of these three 

characteristics is to make them as small as possible so that the miniaturization of the 

sensor system can be developed. The need of the miniaturization of the system sensor 

is driven by the demands for portable or implantable sensor systems especially in the 

medical sector.  

1.2 Deoxyribonucleic Acid 

Deoxyribonucleic acid (DNA) is an essential macromolecule which carrying 

the genetic code of living organisms. The chromosomes in the DNA molecules contain 

huge amount of information that used to synthesize proteins and define their functions. 
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The genetic disorder can affect an individual from birth that makes an individual 

disease-prone because of his or her gene. Some examples of gene-based diseases are 

cancer, diabetes, cardiovascular diseases and Alzheimer disease [3]. Therefore, 

genetic testing has become an important part of the health care checking among the 

people. Due to this demand, such effort is spent to develop reliable, low cost and 

accurate devices for genetic testing. On the other hand, the DNA technology can be 

used in identification of individuals by their respective DNA profiles. This technology 

is especially useful in criminal investigation.  

 

 

Figure 1.2 Diagram of DNA double helix. [4] 

 

DNA is a molecule strand that consists of four different types of nucleotides, 

which are named as adenine (A), thymine (T), cytosine (C) and guanine (G). A 

diagram of DNA double helix [4] is shown in Figure 1.2. The genetic code or gene is 

defined by the sequence of these nucleotides in a single strand. Nucleotides are 

composed of three building blocks, which are sugar deoxyribose, a phosphate group 

and a nitrogen base. The nitrogen bases determine the type of a nucleotide, while the 

sugar-phosphate group forms the backbone of the strand. The adenine only combines 

with thymine while cytosine combines with guanine. This complementary property 

has been used in many DNA detection mechanisms.  
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1.2.1 DNA Hybridization 

In the 1960s, the DNA hybridization technique was developed by Roy Britten 

as a way of analysing the composition of the genome [5]. At high temperatures 

(~84 oC), a double-stranded DNA (dsDNA) will separate into two single-stranded 

DNAs (ssDNA). This phenomenon is called as denaturing the DNA. These two single 

strands will anneal when the temperature is lowered because of the base pairing 

interactions of the complementary strands. This is called as DNA hybridization. 

Diagram of denaturing and hybridization of DNA is shown in Figure 1.3. If the ssDNA 

(probe DNA) from one source is immobilized by attachment to a solid surface such as 

nitrocellulose, complementary ssDNA (target DNA) from another source will 

hybridize with the probe and be retained by the immobilized ssDNA. This is the basis 

for various DNA detection techniques.  

 

 

Figure 1.3 Diagram of denaturing and hybridization of DNA. [5] 
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1.2.2 DNA Biosensor 

DNA biosensor is a powerful tool that utilizes the DNA hybridization 

procedures to detect the presence of bacterial and virus diseases through the use of 

highly conserved DNA sequences. The sensitive element is composed of ssDNA 

molecules that allow the hybridization of the complementary DNA (cDNA). Different 

methods can be used to transduce these hybridization signals, including optical 

transducers [2], electrochemical transduction [6] and the piezoelectric transduction 

[7].  

 

Hybridization biosensors rely on the immobilization of the ssDNA probes onto 

the transducer surface. The hybridization with duplex arrangement can be detected by 

means of hybridization signal or by other changes obtained as a result of the 

hybridization event. There are two important characteristics when developing DNA 

biosensors, the sensitivity and the selectivity [7]. Selectivity gives a measure of the 

ability of the system to detect the analytes in the presence of other interfering 

molecules, while sensitivity is referred to the lowest detectable analytes concentration. 

 

Electrochemical impedance spectroscopy (EIS) is a useful method to 

characterize the interaction between molecules and the sensor surface [8]. A small 

excitation sinusoidal voltage is applied to analyze the properties of the electrode-

electrolyte interface. The impedance value can be obtained from the relationship 

between the applied voltage and the resulting current across the electrode, and it can 

be expressed as the sum of the real and the imaginary parts. The measured value is the 

result of the sum of all contributions of all resistances and capacitances of the 

electrode-electrolyte interface. 

1.3 Problem Statement  

Several studies on the electrical detection of biomolecules based on the 

changes in the electrical double layer properties of the functionalized electrode surface 

have been proposed. Such systems harness the unique impedance values from 
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biomolecules such as DNA, proteins and other cells. One of the detection methods that 

based on this principle is the capacitive detection method [9][10]. The notation‘d’ in 

Figure 1.4 represents the distance between the polarized metal electrode and the 

attracted ions for the capacitance. After dsDNA is formed due to the hybridization 

event, the capacitance of the double layer, CDL, decreases and the charge-transfer 

resistance, RCT, increases. However, the capacitive sensing does not present enough 

stable electrical properties as the measured capacitance after the hybridization event 

may increases. As shown in Figure 1.4, the flexible ssDNA transforms into a rigid rod 

upon hybridization and causes the dsDNA (complementary binding) to become 

straight up to the surface. Under this condition, some ions are able to access near to 

the electrode surface due to the opening space between the dsDNA [11][12][13]. To 

overcome this problem, some efforts have focused on the modification of the probe 

layer on the surface of the electrode [14][15]. 

 

 

Figure 1.4 DNA physical changes upon DNA hybridization [11]. 

 

Therefore, the impedance-based biosensor that measures both capacitance and 

resistance of the electrode-electrolyte interface after the hybridization event can 

provide a more stable and accurate result compared to the capacitive detection method. 

This work proposes a low voltage, label-free and fully integrated impedance-based 

detection circuit using standard CMOS technology to compute both capacitance and 

resistance of the electrode-electrolyte interface. Manickam et al. proposed an 

impedance-based DNA biosensor that utilized the phase-sensitive detection (PSD) 

technique in year 2010 [13]. The existing problems in the Manickam et al. work are 

summarized in Table 1.1. Therefore, the main characteristics of detection circuit to be 
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improved are transimpedance gain, input referred noise and power dissipation. Circuit 

optimization will be done to reduce the number of transistors used in order to cut the 

area consumption. 

 

Table 1.1: Problems in the Manickam et al. work. 

Parameter Units 
(Manickam et 

al., 2010) [13] 
Problems to be solved 

Impedance 

Measurement 

Technique 

- 
Phase-Sensitive 

Detection (PSD) 

Lower attainable gain if 

compared to other methods. 

Gain dB 86 
Not sensitive enough for 

small electrode. Minimum detectable 

input current  
A 330 p 

Technology µm 0.35 
- 

Power Supply V 3.3 

Power Consumption W 511.5 μ 
Too large for low voltage 

applications. 

Layout Area µm2 10000 

Can be optimized by 

reducing the circuit 

complexity. 

 

1.4 Research Objectives 

The objectives of the study are stated as below: 

 

i. To design a CMOS detection circuit and physical layout based on the 

current to voltage converter (IVC) for impedimetric sensing of DNA 

biomolecules.  

ii. To analyze the electrical performance of the designed detection circuit. 
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1.5 Scope of Work 

The scope of this research is stated as below: 

 

i. DNA is chosen as the target of biomolecules.  

ii. Phase-sensitive detection (PSD) is used as the impedance measurement 

method in this study. 

iii. Main characteristics to be improved are transimpedance gain, input 

referred noise and power dissipation of the IVC. Circuit optimization will 

be done to reduce the number of transistors used in the gain-boosting 

amplifier in order to cut the area consumption. 

iv. Silterra 0.18 µm CMOS process (CL180G) will be used in the design of 

fully integrated biosensor circuit. 

v. The Cadence EDA is used as the simulation tool throughout the research. 

vi. This work is limited to circuit design consideration and no experimental 

work will be carried on. 

1.6 Highlights on Research Methodology 

The methodology of this research is shown in Figure 1.5. The research begins 

with determination of the design specifications of DNA biosensor. Then, literature 

review based on various impedimetric detection circuits is done. Next, the 

impedimetric detection circuit is designed and simulated under the Cadence EDA 

environment. The simulated performances of the transistor level circuit are analyzed 

in terms of its gain, noise and frequency range. After the obtained performances are 

met with the initial specifications, the IC layout of the designed circuit is created with 

Cadence EDA Tools. After that, the performance of completed IC layout design is 

analyzed with the existence of parasitic parameters. The performance of the IC layout 

design is again compared with the specifications. The study will proceed to 

d 
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improvements and discussion if the specifications are achieved. Analysis and 

validation will be done on the simulated results before all the simulated results are 

taken as final results. 

 

 

Figure 1.5 Research methodology of this research. 
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1.7 Significance of the Study 

The principal goal of this work is to design a high sensitivity and low voltage 

(< 2 V) impedance-based detection circuit for DNA hybridization detection. The 

impedance-based detection circuit that measures the changes of both capacitance and 

resistance of the electrode-electrolyte interface due to hybridization event is expected 

to provide a more stable and accurate result compared to the capacitive detection 

method. With a highly sensitive detection circuit, DNA testing can be performed with 

small volume of DNA sample. Besides that, it is able to detect short-stranded DNA 

which is less than 10-mer.  

 

In this study, the optimized detection circuit has simpler topology and lower 

power consumption compared to [13] by reducing the number of transistors. The 

achieved low power and small area consumption shows high possibility towards future 

array intergration for massively parallel analysis of DNA detection, which is highly 

desirable in POC applications. 

1.8 Thesis Outline 

In this thesis, the background of the basic architecture of the biosensor and 

DNA molecules is provided in the Chapter 1. Chapter 2 discusses the various kinds of 

existing DNA detection methods. The principles and the advantages of these DNA 

detection methods are discussed in detail. Furthermore, this chapter also gives an 

overview of the operational principles and the building blocks of the impedance-based 

detection circuit. Chapter 3 describes the design procedures of the impedance-based 

detection circuit in a 0.18 μm CMOS process. The schematic and IC layout of the 

detection circuit are presented in this chapter. Chapter 4 presents and discusses the 

simulated performance results of the designed impedance-based detection circuit, and 

Chapter 5 concludes and summarizes the contribution of this work. 
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