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ABSTRACT 

 

 

 

 The increasing demand for small sized, low power consumption and high 

processing speeds have always been the pillars of transistor development. To meet 

the demands of the transistor, the current trend is to reduce the size of Metal Oxide 

Semiconductor Field Effect Transistor (MOSFET) into nanoscale regime because 

size plays an essential role in the performance of transistors. However, the extreme 

scaling of the size has brought new challenges as the MOSFET reaches its 

performance limit. In this respect, the Graphene Nanoribbon (GNR), a promising 

material that holds much potential for the future nanoelectronic devices, is 

introduced as a new material to overcome the limitation that exists in the 

conventional MOSFET. In this research, the analytical model of the GNR Schottky 

diode was presented to analyse the behaviour of metal-GNR interface. The work 

presents a simple model to analyse the current-voltage characteristic in the function 

of Schottky barrier properties such as the potential barrier and the Schottky barrier 

lowering effect of GNR contact. By using the analytical method, the analytical model 

for depletion region width, potential barrier, Schottky barrier lowering effect and the 

current-voltage characteristics of the GNR Schottky diode were presented. Besides 

that, the device structure of the GNR Schottky diode was built using Atomic Toolkit 

Virtual Nano Lab software to analyse the edge effect of metal-GNR interface. Based 

on the results, it is found that the potential barrier of GNR contacts is lower than 

conventional silicon contacts by at least half of it and the metal-Zigzag GNR 

interface shows promising potential to become interconnect as the interface is able to 

carry high current density up to 109 A/cm2. In addition, the proposed current-voltage 

characteristics model of GNR Schottky diode shows good agreement with 

experimental data and also with ATK Tools Simulation result. 
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ABSTRAK 

 

 

 

Permintaan tinggi terhadap saiz kecil, penggunaan kuasa yang rendah dan 

kelajuan pemprosesan yang tinggi merupakan faktor utama dalam pembangunan 

transistor. Bagi memenuhi permintaan terhadap transistor, trend semasa memerlukan 

saiz Metal Oxide Semiconductor Field Effect Transistor (MOSFET) dikurangkan 

kerana saiz transistor memainkan peranan penting dalam prestasi transistor. Walau 

bagaimanapun, mengurangkan saiz transistor secara ekstrem membawa cabaran-

cabaran baru ke atas MOSFET yang menghampiri had prestasinya. Oleh itu, 

Graphene Nanoribbon (GNR) suatu bahan yang berpotensi untuk masa hadapan 

peranti nanoelektronik diperkenalkan untuk mengatasi kelemahan yang wujud pada 

MOSFET konvensional. Dalam penyelidikan ini, model analisis bagi diod Schottky 

dibentangkan untuk menganalisa hubung kait kelakuan logam-GNR. Penyelidikan 

tersebut membentangkan model yang mudah bagi menganalisis ciri arus-voltan 

berhubungan dengan ciri-ciri halangan Schottky seperti halangan keupayaan dan 

kesan pengurangan halangan Schottky bagi permukaan logam-GNR. Dengan 

menggunakan kaedah analisis, model analisis untuk lebar kawasan susut, halangan 

keupayaan, kesan pengurangan halangan Schottky dan ciri arus-voltan bagi GNR 

Schottky diod turut dibentangkan. Di samping itu , struktur peranti bagi GNR 

Schottky diod turut dibina dengan menggunakan perisian Atomic Toolkit Virtual 

Nano Lab bagi menganalisa kesan peminggiran permukaan logam-GNR. 

Berdasarkan keputusan, didapati bahawa halangan keupayaan bagi kontak GNR 

adalah lebih rendah daripada kontak silikon konvensional sebanyak separuh 

daripadanya dan permukaan logam-Zigzag GNR menunjukkan potensi cerah sebagai 

antara sambungan kerana ia mampu membawa arus ketumpatan yang tinggi sehingga 

109 A/cm2. Selain itu, model ciri-ciri arus-voltan bagi diod Schottky GNR juga 

menunjukkan hubungan yang serupa dengan data eksperimen dan juga hasil Simulasi 

ATK Tools.  
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

1.1  Background 

 

 

The famous prediction known as Moore’s Law states that the number of 

transistors in a die will be doubled every 18 months. This prediction was started of 

by Gordon Moore, one of the co-founders of Intel, in the year 1965 and his 

prediction is still true until today. It is the high demand of small sized, low power 

consumption and higher processing speed transistors that has prolonged the life of 

Moore’s Law, and until now Moore’s Law is still used as the guideline for transistor 

manufacturing. The Moore’s Law graph is shown in Figure 1.1. 

 

 
Figure 1.1: Moore’s Law graph [1] 
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In order to fulfill the Moore’s Law, the size of the transistor needs to be 

scaled down drastically. However extreme scaling down of the size of the transistor 

will brings more harms than benefits. Further downsizing the transistor, especially 

the channel length, has a lot of limitations which severely affect the expected 

performance of the devices. The transistor is expected to reach its channel length 

limits before year 2020 [2]. Conventional methods of scaling the size of a transistor 

do not offer the best solution to further prolonging Moore’s Law. Therefore, 

scientists have come out with two different solutions. One is to develop the transistor 

using a totally new structure, and another is to implement new materials to replace 

current silicon technology. 

 

 

Today the idea of using new structure to build a transistor has been 

implemented in the semiconductor industry. The first new-structured-transistor used 

in the semiconductor industry was released by Intel in the year 2011, with the release 

of its Ivy Bridge (microarchitecture) processor based on tri-gate (3D) transistor, or 

commonly known as Fin-Field-Effect-Transistor (FinFet). Due to this major 

improvement on the development of the transistor, Moore’s Law can be further 

prolonged for a few more years. However, this 3D structure transistor will reach its 

limit sooner or later. The last resort to continue prolonging Moore’s Law is to depend 

on the second solution, which is using new materials to replace silicon. 

 

 

The most promising material which many scientists believe can replace the 

current silicon technology is graphene [3]. This new material has a two-dimensional 

honeycomb lattice structure demonstrates very intriguing properties, such as high 

electron mobility at room temperature [4]. High electron mobility is desired in 

electronic device because high mobility is able to produce higher output. Currently, 

no graphene based device is being produced on an industrial scale but intense study 

on the material has been underway for many years. It is believed that the first 

graphene based device will be available within a decade. 
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To fully implement graphene based devices on an industrial scale, a prototype 

of the graphene based device needs to be built and tested many times. However 

building a device using new materials with many uncertainties is very expensive and 

time consuming. Due to these problems, modeling and simulation come in handy to 

study the characteristics of the graphene based device before it is fabricated and 

undergoes final testing. 

 

 

Table 1.1 shows the modeling and simulation challenges of Metal-Oxide-

Semiconductor Field-Effect-Transistor (MOSFET) for gate channel size around 

14nm listed by International Technology Roadmap Semiconductor (ITRS). ITRS is a 

set of documents produced by a group of semiconductor industry experts from five 

leading chip manufacturing regions in the world. These experts are representative of 

the sponsoring organisations which include the Semiconductor Industry 

Associations of the US, Europe, Japan, South Korea and Taiwan. ITRS predicted that 

novel materials and devices will replace the CMOS technology before silicon based 

technology reach its limit in the year 2020. 
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Table 1.1:  Modeling and Simulation Difficult Challenges [5] 

MOSFET Lch ≥ 14nm MOSFET Lch < 14nm 

1. Lithography simulation including 

EUV 

1. Modeling of chemical, 

thermomechanical and electrical 

properties of new materials 

2. Front-end process modelling for 

nanometer structures 

2. Nano-scale modeling for Emerging 

Research Devices and interconnects 

including Emerging Research Materials 

3. Integrated modeling of equipment, 

materials, feature scale processes and 

influences on devices and circuit 

performance and reliability, including 

random and systematic variability 

3. Optoelectronics modeling 

4. Nanoscale device simulation 

capability: Methods, models and 

algorithms 

4. NGL simulation 

5. Electrical-thermal-mechanical-

modeling for interconnect and packaging 

 

6. Circuit element and system modelling 

for high frequency (up to 300GHz) 

applications 

 

 

 

 

1.2  Problem Statement 

  

 

 The introduction of graphene has led to intensive studies being conducted on 

graphene based transistors such as carbon nanotube (CNT) field-effect transistors or 

graphene nanoribbon (GNR) field-effect transistors. These graphene based transistors 

are believed to be the future of nanoelectronic devices and could replace the current 

silicon transistor technology [3]. However people tend to forget that the roots of the 

technology evolution toward a transistor are based in an understanding and 
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development of diode action. Thus it is important to study the behaviour of graphene 

based diodes first because the study of graphene based diodes can be the building 

block on which production of graphene based transistors will be developed. 

 

 

 Currently the graphene based diodes proposed by many researchers are 

carbon nanotube Schottky diodes [6] and graphene nanoribbon Schottky diodes [7]. 

The GNR Schottky diode is the focus of this research. The GNR Schottky diode is a 

Schottky diode that involves a metal-GNR contact. GNR is used for the 

semiconductor region of the GNR Schottky diode and the metal terminal for the 

GNR Schottky diode is usually high work function metal such as palladium or gold 

[8]. 

 

 

Due to the high mobility of graphene, the proposed GNR Schottky diode is 

said to have better performance in terms of its current characteristics. However GNR 

is a new material and many questions still remain unanswered, such as how it 

behaves when in contact with metal. 

 

 

 Many questions have arisen on the Schottky barrier properties, such as how 

the depletion region width and build-in potential barrier will behave in the metal-

GNR contacts. Also how the Schottky barrier effects such as Schottky barrier 

lowering effect affects the performance of GNR Schottky diode when a voltage is 

applied across it. A further question is how the Schottky barrier properties affect the 

I-V characteristic of a GNR Schottky diode. Such questions are still left unanswered.   
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1.3  Research Objective 

 

 

The focus of this research is to model the Schottky barrier properties and I-V 

characteristics of GNR based Schottky diode. The following are the objectives of this 

research: 

 

1. Study and analyse the depletion region width, potential barrier and 

Schottky barrier lowering effect of metal-GNR contacts. 

 

2. Model the I-V characteristic of GNR based Schottky barrier diode. 

 

3. Evaluate the performance of GNR based Schottky diode by comparing 

the developed I-V model with experimental data. 

 

 

 

1.4  Research Scope 

 

 

In order to achieve the objectives mentioned in Section 1.3, the research is 

conducted based on the following scopes: 

 

 

1. Model the depletion region width, potential barrier and lowering Schottky 

barrier effect of one-dimensional monolayer GNR based Schottky barrier.  

 

2. Model the I-V characteristic of monolayer GNR based Schottky barrier. 

 

3. Simulate the model developed using MATLAB software.  

 

4. Validate the developed I-V model with Atomistix ToolKit (ATK) Tools 

Simulation. 

 



7 
 

 

1.5  Contributions 

 

  

The Schottky barrier diode is a diode that is made up from metal-

semiconductor contacts. Metal-semiconductor contacts are a fundamental physical 

parameter that exists in almost every semiconductor device. Currently most of the 

electronic devices in an integrated circuit are connected by means of metal-

semiconductor contacts. Moreover, all integrated circuits communicate with the rest 

of the electrical system via metal-semiconductor contacts. Thus, research on 

graphene based Schottky diodes is very useful in the application of electronic 

components.  

 

 

Currently, Schottky diodes are an electronic component that is widely used 

for radio frequency applications, as well as being used in power application as a 

rectifier. Additionally, Schottky diodes are used in a variety of applications, such as 

photodetector, solar cell, microwave mixer and various integrated circuits. They play 

an important role in various semiconductor applications.  

 

 

 The purpose of this research is to investigate the metal-semiconducting GNR 

contacts. By conducting this research, a better understanding of the behaviour of 

metal-semiconducting GNR is obtained. This is important because the quality of the 

metal-semiconducting GNR contacts plays an important role in the performance of 

various semiconductor devices and integrated circuits. Therefore this research can be 

the basic guideline for predicting the characteristics of metal-semiconducting GNRs. 
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1.6 Outline of Thesis 

 

 

 The research aims is to analyse the metal-semiconducting GNR contacts and 

develop the GNR Schottky diode model. There are 6 chapters in this thesis. The first 

chapter discusses on the background study, problem statement, objectives, scopes 

and contributions of the research. The literature review regarding the basic theory of 

graphene, GNR and Schottky diode was performed in Chapter 2. It provides the 

fundamental principle behind the research. Besides that, discussion on the previous 

studies regarding metal-graphene material interface was also presented in Chapter 2. 

 

 

In Chapter 3, the research methodology, including the research activities, 

research flowchart and modeling flowchart were discussed. The software tools used 

to undergo the research were also reported in Chapter 3. The modeling of the 

fundamental parameters such as Schottky barrier properties of GNR contacts was 

demonstrated in Chapter 4. The modeling part in Chapter 4 includes the modeling of 

depletion region width, potential barrier and Schottky barrier lowering effect.  

 

 

The current-voltage characteristics of the GNR Schottky diode as well as the 

performance evaluation were discussed in Chapter 5. In addition, the edge effect on 

the metal-GNR interface was also discussed in Chapter 5 by using the ATK Tools 

Simulation software. Finally Chapter 6 discusses the conclusion of the research and 

proposal for future work. 
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