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ABSTRACT 

 

 

 

 

 Efficient control of industrial processes is of great importance. The industrial 

control performance has to meet the desired optimum operation.  However, the 

tuning process becomes a challenging matter especially for Multiple-Input Multiple-

Output (MIMO) system with two-time scale characteristic.  This motivates the use of 

singularly perturbation method in the design of Multivariable Proportional-Integral-

Derivative (MPID) controller tuning. The singularly perturbation methods based on 

Naidu and Jian Niu were considered and tested. It is observed that singularly 

perturbation system by method of Naidu gives a good approximation at low, middle 

and high frequencies. Two MIMO systems with two-time scale characteristic that are 

wastewater treatment plant, and Newell and Lee evaporator were used as test beds. 

Traditionally, the MPID controller tuning namely Davison, Penttinen-Koivo, 

Maciejowski and Combined are based on full order static matrix inverse model. In 

this work, the singularly perturbed MPID controller tuning methods are proposed 

based on the dynamic matric inverse to improve the tuning of MIMO system. 

Furthermore, Particle Swarm Optimization has been applied in the tuning of the 

parameters for an optimum control performance. Comparing the closed loop 

performance and process interaction of traditional MPID and the proposed singularly 

perturbed MPID controller methods, the latter methods are able to improve transient 

responses, provide low steady state error, and reduce the process interaction. 
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ABSTRAK 

 

 

 

 

Kawalan yang berkesan memainkan peranan yang sangat penting di dalam 

sesebuah proses industri.  Prestasi kawalan bagi setiap industri hendaklah mencapai 

tahap operasi optimum yang diperlukan.  Walau bagaimanapun, proses penalaan 

sering menjadi satu perkara yang mencabar terutamanya apabila melibatkan sistem 

yang mempunyai pembolehubah yang Berbilang-Input Berbilang-Output (MIMO) 

dengan ciri skala dua-kali. Ini mendorong kepada penggunaan kaedah usikan 

bersendirian ke dalam strategi mereka bentuk pengawal penalaan Pembolehubah 

Pelbagai Terbitan Penting Seimbang (MPID). Kaedah usikan bersendirian 

berdasarkan Naidu dan Jian Niu telah diguna dan diuji. Adalah diperhatikan bahawa 

kaedah usikan bersendirian oleh Naidu menawarkan anggaran yang baik pada 

frekuensi yang rendah, sederhana dan tinggi. Dua sistem MIMO dengan ciri skala 

dua-kali, iaitu loji rawatan air kumbahan, dan penyejat Newell dan Lee telah 

digunakan untuk ujikaji. Pengawal penalaan tradisional MPID, Davison, Penttinen-

Koivo, Maciejowski dan Combine adalah berdasarkan kepada model asal matrik 

statik songsang. Di sini, kaedah pengawal penalaan MPID usikan bersendirian 

berdasarkan matrik dinamik songsang telah dicadangkan bagi memperbaiki proses 

penalaan sistem MIMO. Selain itu, Pengoptimuman Zarah Terkumpul telah diguna 

untuk mendapatkan parameter penalaan untuk kawalan yang optimum.  Berdasarkan 

perbandingan bagi prestasi gelung tertutup dan proses interaksi di antara MPID 

tradisional dan MPID usikan bersendirian, kaedah yang kedua dapat meningkatkan 

tindak balas sementara, memberikan ralat keadaan mantap yang rendah, dan 

mengurangkan proses interaksi. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

Proportional-integral-derivative (PID) controller is the most preferable in 

industrial process control [1].  PID involves three separate constant parameters, 

which are proportional ( ), integral ( ) and derivative ( ). By tuning the three 

parameters of a PID controller algorithm, the controller can provide the control 

action designed for specific system requirements. Due to its simple structure [2], 

easiness to understand and ability to give good stability and high reliability to the 

system [3], PID is known as one of the powerful control designs.  PID controller is 

widely used in both single-input single-output (SISO) and multiple-input multiple-

output (MIMO) systems.  

 

Tuning of PID parameter for SISO system is frequently based on Zeigler 

Nichol, Cohen Coon, pole placement and gain-phase margin methods.  Tunings of 

PID parameter for MIMO systems are also usually involved with the conventional 

method as performed to SISO systems [4].  However, this method is only applicable 

for decentralized multivariable controller which involves several numbers of 

individual PID controllers.  This application can cause extreme problems due to the 

existence of interaction [5].  Therefore, better tuning method is highly required to 

achieve great performance for MIMO system [6]. 
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Multivariable PID (MPID) control usually uses to control more than one 

control variables. Some of the control design purposes are to improve the 

manufacturing process, increase efficiency in terms of energy usage, reduce cost and 

alleviate time constraints.  For example, industrial process control involves multiple 

control objectives such as to control level, temperature and outlet concentration, 

which can possibly be attained by adjusting selected manipulated variables during 

the process.  

 

Industrial process control essentially involves multivariable system, some of 

them have different dynamic characteristics (two-time scale characteristic) for each 

control variable including slow and fast variables. This characteristic causes 

difficulties in finding the optimal control tuning. Considering slow variable will 

deteriorate the performance of fast variable control and vice versa.    

 

 

 

 

1.1      Problem Statement 

 

 

Owing to the various industrial process controls based on MIMO systems, 

multivariable control tuning becoming the preferred tuning control. Existing 

multivariable control are based on a number of control techniques such as PID, 

model predictive control (MPC), internal model control (IMC), linear-quadratic-

Gaussian (LQG) and inferential control. Today, PID controller is still the most 

applied [7]. However, due to the presence of process interaction and different 

dynamic characteristic in the multivariable system, the tuning of PID parameters has 

always been a challenging and crucial matter for optimum operations [4].  Therefore, 

this thesis presents MPID control tuning methodology which exploits the properties 

of a singularly perturbation method. 

 

The MPID methods involved are Davison, Penttinen-Koivo, Maciejowski and 

Combined methods.  The conventional MPID control tuning designs were performed 

at a steady state response, which is at zero frequency gain. In this work, the MPID 
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control tuning was designed based on dynamic inverse matrix.  The proposed designs 

are able to provide dynamic output responses with good tracking ability, which is 

more practical in real application.    

 

Since the considered multivariable systems involve two-time scale 

characteristic, the method of singularly perturbed is desired.  By having the MPID 

based on singularly perturbation method, it is able to provide easiness in the 

optimization process and reduce the existence of process interaction between 

controlled and manipulated variables.   

  

 

 

 

1.2      Research Objectives 

 

 

The objectives that are bound to be answered throughout the research are: 

 

i. To analyze multivariable process control with two-time scale 

characteristic by exploiting the singularly perturbation method. 

ii. To enhanced the tuning method for MPID controller design using 

dynamic inverse matrix approach – Davison, Penttinen-Koivo, 

Maciejowski and Combined methods. 

iii. To apply controller tuning parameters based on particle swarm 

optimization (PSO).  

iv. To evaluate and compare the effectiveness of the proposed MPID control 

tuning designs in two case studies – Activated sludge wastewater 

treatment plant and Newell and Lee evaporator system. 
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1.3      Research Scope 

 

 

This project will be focus on the control performance and process interaction 

of multivariable system with two-time scale characteristic. Two case studies 

presented, wastewater treatment plant and Newell and Lee evaporator. For each 

system, two control variables and two manipulate variables are considered. To 

analyze multivariable system with two-time scale characteristic, singularly 

perturbation method by Naidu and Jian Niu are implemented.  

 

Once the implementation was completed, MPID control tuning designs which 

are Davison, Penttinen-Koivo, Maciejowski and Combined method are enhanced 

based on the dynamic inverse matrix using the obtained singularly perturbed system. 

Since it involve with several tuning parameter, particle swarm optimization (PSO) 

was applied.  In this study, linearly decreasing inertia weight and integral time square 

error (ITSE) fitness function are considered. To measure the effectiveness of the 

proposed methods, all of the output response and process interaction for both case 

studies are evaluate and compare accordingly. It is based on the simulation studies by 

using Matlab/Simulink software. 

 

 

 

 

1.4      Contribution of the Research Work 

 

 

The main contributions of this research can be concluded as follows: 

 

i. Enhanced MPID tuning framework using singularly perturbation 

method based on Naidu and Jian Niu. 

ii. Provide ease of tuning based on the design of enhanced MPID control 

using dynamic inverse matrix of singularly perturbed system. 

iii. Attained optimum tuning parameters for each MPID controller 

designs using particle swarm optimization (PSO). 
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iv. Provide efficient control for wastewater treatment plant and Newell 

and Lee evaporator. Successfully controlled the output responses at 

the desired value and minimized the process interactions that exist 

between the system variables. 

 

 

 

 

1.5      Outline of the Thesis 

 

 

 Chapter 2 represents the literature review of the conventional MPID 

controller, singularly perturbed multivariable controller, singularly perturbation 

method by Naidu and Jian Niu, optimization technique and PSO algorithms.   

 

The research methodology will take place in Chapter 3 in which the research 

activities will be described in detail. The sequences of multivariable PID control 

based on four different methods are discussed.  

 

The simulation results and discussion for multivariable PID control for 

activated sludge wastewater treatment plant will be discussed thoroughly in Chapter 

4.    

 

Chapter 5 reports the results and discussion for the second case study which 

is an evaporator system.  

 

Finally, chapter 6 concludes the research work.  Recommendations for future 

works are also listed down in this chapter. 
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