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ABSTRACT 

 

 

 

 

Wind energy is a boundless renewable energy which can be tapped 

continuously.  It is clean and free energy making it incomparable with conventional 

fossil fuels.  However, high stochastic nature of the wind the electric power 

generated affects the power quality of grid system.  Compressed Air Energy Storage 

(CAES) is a mature energy storage technology in handling wind fluctuation problems 

such that the generated energy would be supplied to the grid without affecting the 

grid performance.  Its large scale capacity storage, long storage period, fast ramp 

rates and low capital cost has made it as the best choice to be tagged to wind turbine 

in dispatching wind power.  But, operating system of existing CAES is more to 

economic benefit, in which it will only discharge during high electricity cost and 

charge during low electricity cost.  This thesis proposes a parallel connection of 

CAES with wind turbine where it can promise continuous supply to grid system with 

low power consumption during charging process.  The first connection is to connect 

the wind turbine, drive train, compressors, tank, turbine and generator. While the 

other one is bypassing the direct connection of drive train, (wind turbine to 

compressor on a shaft and compressed air turbine to generator on another shaft).  

Derivation of mass flow rates leaving the tank is based on single stage expansion 

process.  Analysis was carried out using MATLAB simulink to prove the 

effectiveness of the storage to react to the changes of wind speed, in which the 

results were focussed on the grid’s voltage and active power.  The results show that 

the proposed connection of wind CAES does not only able to smooth out wind power 

fluctuations but it also provides continuous power to supply the grid system 

compared to Battery Energy Storage.  Moreover, its consumed lower power during 

charging process compared to existing CAES system.   
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ABSTRAK 

 

 

 

 

Tenaga angin adalah tenaga yang tidak mempunyai had dimana ia boleh 

dialirkan secara berterusan.  Ia bersih dan percuma oleh itu tidak dapat dibandingkan 

dengan tenaga minyak fosil konvensional.  Tetapi, sifat tenaga angin yang berubah-

ubah memberi kesan besar kepada kualiti kuasa elektrik di dalam sistem grid. 

Simpanan Tenaga Angin Termampat (CAES) adalah satu sistem simpanan tenaga 

yang cukup matang yang boleh menyelesaikan masalah angin yang berubah-ubah 

dimana tenaga yang dihasilkan akan dibekalkan ke grid tanpa member kesan 

terhadap prestasi grid.  Saiznya yang besar, tempoh penyimpanan tenaga yang lama, 

kadar tindak balas yang cepat dan kos utama yang rendah telah menjadikannya 

pilihan yang baik untuk disambungkan dengan kincir angin untuk penghantaran 

kuasa angin.  Walau bagaimanapun, sistem operasi CAES yang sedia ada adalah 

lebih kepada keuntungan ekonomi, dimana ia hanya akan dinyahcas ketika harga 

elektrik yang tinggi dan cas ketika harga elektrik rendah.  Tesis ini memperkenalkan 

sambungan kincir angin dengan CAES secara selari dimana ia dapat menjanjikan 

sumber yang berterusan ke sistem grid dengan memerlukan kuasa yang rendah ketika 

proses mengecas.  Sambungan pertama adalah meyambungkan kincir angin secara 

sambungan terus drive train atau sambungan kompresor, tangki, turbin dan 

janakuasa dengan kincir angin dengan satu gandar.  Sementara itu, sambungan yang 

berikutnya adalah pintasan gandar (kincir ke kompressor di satu gandar, dan turbin 

udara mampat ke janakuasa di satu gandar lain).  Pemerolehan kadar jisim yang 

meninggalkan tangki adalah berdasarkan sistem turbin satu tahap yang diperkenalkan 

dalam tesis ini.  Analisis telah dijalankan menggunakan MATLAB Simulink untuk 

membuktikan keberkesanan penyimpanan tenaga untuk bertindak kepada perubahan 

kelajuan angin, dimana voltan dan kuasa menjadi keputusan utama dalam analisis ini.  

Keputusan menunjukkan, sambungan kincir angin dengan CAES yang diperkenalkan 

bukan sahaja mampu melicinkan kuasa angin yang berubah-ubah tetapi juga 

membekalkan kuasa yang berterusan ke sistem grid berbanding Tenaga Simpan 

Bateri.  Tambahan pula, ia menggunakan kuasa yang lebih rendah berbanding sistem 

CAES sedia ada.  
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of The Study 

 

 

 Throughout the years between 1996 until 2012, the wind power global 

capacity has shown exponential growth.  By the end of 2012, the total wind power 

global capacity has reached a staggering 283 GW [1].  The European Wind Energy 

Association’s expects wind energy to serve up to 15.7% of its 230 GW electricity 

demand by 2020 and 28.5% of 400GW demand by 2030.  It is also expected that the 

generated wind energy in 2050 can provide half of Europe’s power [2].  Since wind 

energy is free, the price for this energy will not increase thus it is widely used in 

many parts of the world.  The production of electricity using wind energy can save 

several billion barrels of oil and avoid carbon emission and various types of 

greenhouse gasses.  For example, running a 1 MW wind turbine for one year can 

reduce the following gasses from entering the atmosphere [3]: 

 

 1500 tons of carbon dioxide 

 6.5 tons of sulphur oxides 

 3.2 tons of nitrogen oxides 

 60 pounds of mercury 

 

 Basically, wind energy is captured by a set of rotating blades that transfers the 

mechanical and rotational energy to a shaft.  The shaft then transfer this energy to a 

generator that converts it into electrical energy [4].  The main drawback of wind 

energy is its stochastic attribute that is dependent on spatial and temporal resolution.  
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It can only operate after a certain cut-in speed is reached and will stop operation if 

the wind speed exceeds the cut-out speed in order to protect the wind turbine system.  

 

 

So far, several common approaches have been introduced in dealing with these 

fluctuation problems such as adjusting pitch angle and rotation speed of wind power 

generator, transferring generated wind power through DC link and inverting control 

system and applying energy storage, as highlighted in various reviews [5].  However, 

for this research, energy storage has been chosen as the most useful and effective 

methods to handle the fluctuation problem because it consists of an energy buffer 

that can effectively suppress during fast fluctuations.  Energy storage with a proper 

controlled system is able to absorb small variation in wind power output and reduces 

negative impact on the existing power grid [6, 7].  

 

 

 Apart from that, with the presence of energy storage, the surplus wind energy 

can be stored and used at low wind speeds or high peak demand.  At the same time, it 

can also be used to mitigate power fluctuation integrated into the grid during high 

wind speeds [8].  However, the conventional grid system has not been designed to 

accommodate energy storage systems.  Therefore, careful planning needs to be done 

in order to ensure its compatibility with the grid.  Furthermore, the storage system 

must be able to offset the amount of power when energy demand exceeds generation, 

which typically occurs during low wind speeds. 

 

 

 In stabilizing grid system with wind turbine application, energy storage can 

be categorized into bulk energy storage, distributed generation and power quality, as 

listed in Table 1.1 [9, 10].  Bulk energy storage acts to provide a large amount of 

intermittent electricity generation from renewable energy source.  Its fast response in  

quickly discharging large amount of stored electricity during intermittent wind can 

mitigate some of the wind fluctuation problems (output smoothing, load levelling 

and spinning reserve) [11].  Distributed generation, also known as on-site generation 

disperses generation or decentralizes energy.  Not only can it generate electricity 

from small energy source but it can also collect the energy from many sources.  

Thus, for wind application, it is able to deal with peak shaving and transmission 

deferral.  Energy storage systems provide wide range of power quality protection due 
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to their ability to react to the fast change in wind speed. With the presence of filters, 

energy storage (with standby mode), most transients can be avoided by limiting 

excess voltage.  Thus energy storage systems are the most preferable solution for 

voltage sags, under voltages and interruptions power supply [12].    

 

Table 1.1: Energy storage category 

Category Energy storage technology 

Bulk energy storage Pump hydro  

 Compressed Air Energy Storage, (CAES) 

 Lead-acid batteries 

 Ni/Cd 

Distributed generation Lead-acid batteries 

 Na/s, Li-ion, Zn/Br, V-redox, batteries 

 Flywheel 

 Hydrogen  

Power quality Lead-acid batteries 

 Super Magnetic Energy Etorage (SMES) 

 Flywheel 

 Na/s, Li-ion, Zn/Br, V-redox, batteries 

 Supercapacitiors 

 

There are three main types of generators that can be installed along with wind 

turbines; i) Squirrel cage induction generator for fixed speed, ii) Doubly fed 

induction generator for variable speed and iii)  Permanent Magnet Synchronous 

Generator (PMSG) for variable speed [13].  In [4, 7, and 8], PMSG is suggested to be 

connected to a variable speed wind turbine because of its higher efficiency, which 

leads to a better system performance.  It also requires minimal maintenance cost and 

weighs less since it does not have external rotor current and gearbox.  Gearbox is 

used to match the turbine’s low rotational speed (high torque) with the generator’s 

high speed (low torque).  This is the main reason why PMSG does not require a 

gearbox to operate. 
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1.2 Research Objectives 

  

  

 This research is based on the following objectives 

a) To propose a new approach in attaching CAES to a wind turbine to 

reduce the complexity of control system and to continuously powers 

the generator. 

b) To smooth out wind power fluctuation in the grid system using 

CAES.   

c) To validate the voltage and generated power at the grid system using 

different CAES configuration, battery energy storage and standalone 

wind system.  

 

 

 

 

1.3 Research Scope 

 

 

 Selecting the right energy storage type helps to improve the grid system more 

efficiently.  The technical benefit includes power consumed during the charging 

process, power generated during the discharge time, voltage, power and frequency 

regulation: hence increasing quality of supply at grid system.  The economic benefits 

cover the installation, operation and maintenance cost of storage.  Coupling with 

wind turbine helps to further reduce greenhouse gasses (SO2, NOx, and CO2) 

emissions especially during charging process.  Normally, it occurs during charging 

process where storage consumes power from the grid system to charge the energy 

storage.  However, with wind turbine, power consumption to charge or discharge the 

storage is drawn from wind power itself.  

 

 This study focuses on bulk energy storage system for wind application. CAES 

is chosen to be combined with a wind turbine to smooth out wind power fluctuations.  

Typically bulk energy storage refers to a wind farm capacity of more than 10 MW 

with storage of more than 10-50 MW.  However in this project, the system is scaled 

down to only a 2 MW wind turbine with a 2 MW discharge storage to illustrate 

CAES capability in smoothing out wind fluctuations.  The 2 MW wind turbine is 
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chosen in this research due to the fact that this is a typical value for a wind turbine 

system, as mentioned in [14].  The 2 MW wind power with 2 MW storage is 

modelled using MATLAB software to export the generated power to a 33 kV 

distributed grid via an AC/DC and DC/AC converter.  Tan W.C et. al [15] stated that, 

2 m/s to 6 m/s is the wind speed range in Ulu Pauh, Malaysia, thus this research 

considers the highest wind speed value of 6 m/s with mathematical variation of 3 m/s 

wind speed to generate 2 MW wind power at grid system.   

 

 

A new approach parallel model of CAES is applied in this project to ensure 

that the tank (CAES storage) will never be empty and guarantee continuous supply to 

the grid system.  To construct this parallel connection, the drive shaft connects the 

drive train and the generator is bypassed across the tank.  The tank is connected 

between a shaft, a set of compressors and a turbine before entering the generator.  To 

reduce the power consumed during air compression, a three-stage compression 

process is applied along with a single stage expansion.  To further reduce the power 

consumption during air compression, a small mass flow rate (7.5 to 9) kg/s is set for 

the compression process.  This (7.5 to 9) kg/s mass flow rate is half of the mass flow 

rate entering the expansion train in order to generate 2 MW mechanical power to run 

the generator.  As mentioned in [16], mass flow rates required to run the compression 

train is twice the mass flow rate that runs the expansion train.  

 

 

Battery energy storage and stand alone wind turbine are also modelled to 

validate the simulation results of wind CAES.  The simulation results will cover the 

fluctuation characteristics of voltage, frequency and power generated to grid and the 

fluctuation of the AC/DC/AC link voltage.  

 

 

 

1.4 Problem Statement 

 

 

 The power output of wind energy is directly proportional to the cube of wind 

speed and every single wind fluctuation affects the extracted wind power.  This 

behaviour causes power fluctuation and voltage flicker in the grid system.  Various 
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types of control system and modelling are designed to tackle this fluctuation problem 

and to dispatch the wind energy in the most efficient way.   

 

 

Kinetic energy of inertia control, pitch angle control, stall regulated control, 

and generator control and DC-link voltage control are the lists of power smoothing 

method with no energy storage.  But these control systems are limited to a certain 

control ranges which totally dependent on wind speeds.  In fact, even during high 

wind speeds, there is a possibility of wind energy to be wasted because; a normal 

device/component/equipment will not consider the surplus input source which is 

more than its rated value.  This is designed in the system to enhance the life and 

longevity of the system itself.  During high penetration wind speed, with an installed 

wind power of 9 MW, almost 27% of available wind energy is discarded [17].  

While, in low wind speed, the non storage controllers is controlled to allow the wind 

turbine to operate at its optimum conditions [16].   

 

 

 The most effective way to deal with wind power fluctuation is using energy 

storage but unfortunately, its installation and maintenance cost is quite high.  

Different types of energy storage give diverse capability in solving wind power 

fluctuation problem.  Thus, by choosing the suitable type of energy storage, high 

installation can be avoided.  Based on bulk energy storage which listed in Table 1.1, 

CAES have low capital cost, large power rating, long life cycle and low Greenhouse 

Gasses (GHG) equivalent emissions compared to others [10, 18].   

 

 

 CAES is mature enough energy storage for wind applications.  However, 

there are only two existing CAES system in this world, thus various research works 

related to this energy storage are focused on minimizing operational cost, 

considering their off–design performance, energy consumption and co-location the 

energy storage to decrease transmission requirement cost [19, 20].  

 

 

 The existing connection of wind CAES is mostly in series connection where 

the wind turbine connects to generator through CAES.  No bypass option between 

the drive shaft to the generator.  Normally, this series connection requires the tank to 
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be filled up first before discharge or it can also be controlled to charge and discharge 

at the same time.  Besides, this type of CAES usually charges during midnight where 

the low cost electricity and discharge during daylight where the electricity is high 

[21].  However, the electricity cost required to compress the air is still high due to the 

all available wind is compressed into the storage.  Even though the air is compressed 

during low electricity cost, the power required to run the compressors to compress 

the available air is still high, which leads to the increment of electricity cost.  At the 

same time, more heat is generated during compression process which leads to GHG 

emissions.   

 

 

 The new approach in combining wind turbine with CAES system can help to 

reduce power consumption during compression process, heat generation and work 

done to compress air because the parallel CAES is modelled to only compress the 

excess wind energy into storage.  Correspondingly, for economic analysis, the 

installation cost and maintenance of CAES is less than Battery Energy Storage, 

(BES) [18].   

 

 

 

 

1.5 Methodology 

 

 

 The CAES is mathematically modelled and tested in MATLAB Simulink 

software before it is combined with wind turbine and grid system.  Meanwhile the 

existing model of battery is applied for result validation.  

 

 

 

 

1.6 Contribution of the Research 

 

 

 The contributions of this thesis are listed as follows: 

a) Detailed mathematical modelling of parallel CAES system which 

connects wind turbine, drive train, compressors and turbine in one shaft. 
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b) Derivation of mass flow rate leaving the tank for single stage expansion 

process application. 

c) Validation of the CAES effectiveness in smoothing out power 

fluctuation and provide continuous power to the grid.  

 

 

 

 

1.7 Thesis Organization 

 

 

 This thesis consists of six chapters which are outlined as follows: 

 

 

 Chapter 2 reviews the previous publications on wind turbine, energy storage 

and methods to overcome wind fluctuations problem.  The charging and discharging 

process, advantages and disadvantages of the chosen storage are also mentioned in 

this chapter.   

 

 

 The research methodology will take place in Chapter 3 where the 

mathematical modelling of CAES complete with derivation to obtain the mass flow 

rate leaving the tank and the mass flow rate from the shaft.  Wind turbine and drive 

train formation is described.  BES, DC-DC control system and three phase inverter 

control system is also highlighted in this chapter.  

 

 

 Chapter 4 presents the simulation results for the proposed connection of wind 

CAES.  Various test cases are carried out to verify the CAES models in different 

circumstances of wind speeds.  Result validation using different configuration of 

CAES, BES and standalone wind are also analysed here.  

 

 

Chapter 5 gives full conclusion throughout this study and several suggestions 

for future works in order to improve the current CAES work.  
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