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ABSTRACT

In the SoC development, the compatibility of IP cores is one of the challenges 
that need to be addressed carefully. Most of the time, IP cores is having different 
input output specifications with new platform. The Wishbone SoC interconnection 
Architecture is aim to provide a good solution for SoC integration issues by having 
common interface specifications. In this project, the Wishbone on-chip computer 
bus for 32-bit cores is implemented in system verilog along with three different 
arbitration schemes which are fixed priority, round robin, and priority control. On 
top of that, the optimum transfer size for Wishbone bus in terms of bus throughput 
and average wait cycle is presented as well. It is found that the optimum transfer size 
for Wishbone bus is 64 bytes. Finally, the Wishbone bus is used to examine the bus 
performance of different arbitration schemes in Modelsim simulation. Round robin 
arbitration scheme is the best among three arbitration schemes in terms of bus 
throughput, logic complexity, and maximum wait cycle.
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ABSTRAK

Dalam perkembangan SoC, keserasian teras IP adalah salah satu cabaran 
yang perlu ditangani dengan berhati-hati. Kebanyakan masa, teras IP mempunyai 
spesifikasi output input yang berbeza dengan platform yang baru. Wishbone SoC 
sambungan arkitek bertujuan untuk menyediakan satu penyelesaian yang baik untuk 
isu-isu integrasi SoC dengan mempunyai spesifikasi perantaraan yang sama. Dalam 
projek ini, Wishbone bas komputer untuk 32-bit teras dilaksanakan dalam Sistem 
Verilog bersama-sama dengan tiga skim pengawal trafik bas yang berlainan. Skim 
tersebut ialah keutamaan tetap, robin bulat, dan kawalan keutamaan. Selain itu, saiz 
optimum pemindahan untuk bas Wishbone juga dicari dari segi kadar pengeluaran 
bas dan kitaran tunggu purata. Saiz optimum pemindahan untuk bas Wishbone 
didapati adalah 64 bytes. Akhir sekali, bas Wishbone juga digunakan untuk 
memeriksa prestasi bas Wishbone untuk skim pengawal traffic bas yang berbeza 
dalam simulasi Modelsim. Skim pengawal traffic bas robin bulat merupakan yang 
terbaik antara tiga skim dari segi kadar pengeluaran bas, kerumitan logik, dan kitaran 
tunggu maksimum.
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CHAPTER 1

INTRODUCTION

The world's first single-chip microprocessor was introduced by Intel in 
November 1971. It was named as Intel 4004 and has 2300 transistors which can run 
at a clock speed of up to 740 KHz [1]. Since then, the compute power of 
microprocessor increase exponentially year by year. Besides that, the number of 
transistor on a single chip is also following a trend at which it is doubled every 18 
months. This trend of transistor number on a single chip is widely known as 
Moore's Law which was named after Gordon E. Moore, the co-founder of Intel 
Corporation. This law still holds true until today. Today, the latest microprocessor 
available in the market is manufactured using 22nm process technology and the 
transistor count was more than 1 billion. The latest Intel Core i7 Processor is able to 
run at clock speed up to 4.00 GHz which is about 5000 times higher than the first 
Intel 4004.

The increasing number of transistor per chip is mainly due to transistor 
scaling throughout each technology node. This enabled the possibilities of 
performing more features in a chip because more and more transistor can be packed 
inside a chip. Therefore the complexity of logic calculation a chip can perform is 
also increased. Besides transistor scaling, microarchitecture also play an important 
role in microprocessor performance. With the advances in microarchitecture, the
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compute power of microprocessor can also be increased dramatically. We have seen 
aggressive clock scaling and introduction of speculative execution, parallel 
instruction issue, out-of-order processing, and larger caches over the course of 
microprocessor development [1]. All of these were introduced with the goal of 
increasing microprocessor performance.

On top of transistor scaling and microarchitecture enhancement, the VLSI 
(Very Large Scale Integration) industry is trending towards SoC (System-on-Chip) 
design. SoC is a technology that packages the whole system inside a single chip. It 
has many advantages over traditional VLSI design such as fast, low power, small 
size, and low cost.

One of the challenges in the SoC world is the pressure of time to market for 
chip manufacturers. Because of the fast changing requirements in the consumer 
world, chip manufacturers no longer have the luxury of long design cycle time. In 
the contrary, the design cycle time need to be minimal so that the product can reach 
the market fast and on time. In order to reduce design cycle time, one of the solution 
is to maximize the reuse of previously designed and proven working IP and integrate 
different IPs together to form a new product with desired features. Hence, the 
successfulness of a SoC product depends heavily on effectiveness of integration of 
different IP cores.

In order to ease integration work, the compatibility of IP (intellectual 
property) cores is a vital issue that needed to be taken care of. Most of the time, IP 
cores that are planned for reuse usually are designed earlier and the input output 
specifications are inconsistent with the new platform [2]. This will cause IP 
integrator to have the need to consider interface design and testing which will cause 
complication in integration process [3]. As a result, integration of different IP 
becomes harder with non-standard interconnection scheme.

The Wishbone SoC Interconnection Architecture for Portable IP Cores is 
introduced to use with semiconductor IP Cores with an aim to provide flexible design 
methodology. It is designed to be a reliable and good solution for SoC integration



3

issues. Besides that, it also fosters design reuse for IP cores that follow common 
interface specifications. Having a common interface specification is important to 
ensure that the integration of different IP cores is at minimal effort. Moreover, 
usually IP provider is from different vendor so this is even more important to have 
common interface specifications because the integrator might not know very well 
with the IP cores itself.

Wishbone arbitration scheme is user defined to arbitrate multiple bus requests 
at the same time. When two or more bus masters are requesting to use the shared 
system bus at the same time, there is a need of an efficient arbitration scheme to 
handle this else there will be bus contention issue since two or more bus master is 
sending its respective data at the same time to destination address. This will cause 
the data receiving at the bus slave to have errors. Without a good arbitration scheme, 
it might cause starvation of bus master whereby certain bus master did not get bus 
grant even after waited for long period of cycle time because the shared bus is in 
used by other bus master. Therefore, the decision of which bus master getting 
granted should be made fair so that every bus master has the equal opportunity to use 
the shared bus. Hence, the efficiency of arbiter will have impact on system 
performance because the cycle time to complete a transaction is not the same for 
different arbitration scheme.

1.1 Problem Statement

The problem statements for this project are as follows:

* IP cores that is designed with non-standard interfaces and transaction 
protocol cause extra effort in integration works and slow down design cycle

* The arbitration scheme in Wishbone bus is user defined. There is a lack of 
data to compare the performance of different arbitration schemes in 
Wishbone bus.
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1.2 Research Objectives

With the problem statement presented on previous section, this project is aim 
to have objectives that are able to solve the problem. Therefore, the research 
objectives for this project are as follows:

* To implement the Wishbone on-chip computer bus with arbitration for 32-bit 
cores in system verilog

* To examine the performance of different arbitration schemes of the Wishbone 

bus

1.3 Project Scope

This project will be focusing on the following scopes:

* A shared bus system is developed with address and data width of 32 bits 
using Wishbone bus system in SystemVerilog

* The Wishbone shared bus system is used to examine performance of the 
following 3 arbitration schemes that support up to five bus masters:

o Fixed Priority 
o Round Robin
o Priority with waiting time control

* Bus master and bus slave are emulated with BFM (Block Functional Module) 
in SystemVerilog that can send bus traffic

* Altera Modelsim Starter Edition 10.1d is used as simulation tool



5

1.4 Contribution of Work

The objectives of this project are to implement a 32-bit Wishbone on chip 
computer bus and to examine the performance of different arbitration schemes of the 
Wishbone bus. There are three different arbitration schemes implemented. The 
three arbitration schemes are:

1. Fixed Priority
2. Round Robin
3. Priority with waiting time control

Therefore, this project presents a functional Wishbone Shared bus system 
RTL that is come with built in arbiter. The Wishbone Shared bus system is synthesis 
ready and is able to integrate with other IP cores that is following standard Wishbone 
interface. Also, there will be three different arbitration schemes presented in this 
project. Each of the arbitration schemes is supporting up to five bus masters. After 
that, this project compares the performance between these three arbitration schemes 
quantitatively on Wishbone Shared bus system. It finally come up with a conclusion 
of what is the optimum transfer size of Wishbone shared bus system and which 
arbitration scheme is a more suitable one compared with the other two.
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in ProceeJz^gs o /  ̂ Ae co^/ere^ce o^ Deszg^, %M?ow%?o %^J ^es  ̂z  ̂FMrope- 
Fo/Mwe 2. 2004. IEEE Computer Society.

19. Shrivastav, A., G. Tomar, and A.K. Singh. Per/orw%^ce Cowp%rzso^ o /  
^M F^ FMs-F%seJ ^ys^ew-O^-CAzp CowwMMzc%?o Pro^oco/. in 
CowwM^zc%^zo  ̂ ^ys^ews %^J Ne^wor^ TecA^o/ogzes 2077 
7^er^%?zo^%/ Co^/ere^ce o^. 2011. IEEE.

20. Christiansen, T. and N. Torkington, Per/ coo%^oo^, seco^J eJzYzo .̂ 2003: 
O'Reilly Media, Inc. 976.




