
ARBITRATION SCHEMES OF WISHBONE ON-CHIP BUS
SYSTEM

ONG KOK TONG

A project report submitted in partial fulfilment of the
requirements of the award of the degree of

Master of Engineering (E7ec?r/c%f - CowpM^er & M/croe/ec^ro^/c Sy^ew)

Faculty of Electrical Engineering
Universiti Teknologi Malaysia

JUNE 2014

iii

ACKNOLEDGEMENTS

I would like to take this opportunity to express my appreciation to those
people, researchers, and academicians who had provided a lot of advices and
guidance to make this project a successful one. Firstly, I would like to express my
gratitude and regards to my supervisor, Assos. Prof. Dr. Muhammad Mun'im Ahmad
Zabidi for his guidance, support, and advice throughout the entire project.

Besides, I also take this opportunity to express my gratitude to Company
Mentor, Mr. Chew Beng Wah for his support, understanding, and advice given to me,
which help me to complete this project.

Lastly, I would like to thank my parents, colleagues, friends, and others who
have given me constant encouragement that help me to overcome obstacles
throughout the entire project.

iv

ABSTRACT

In the SoC development, the compatibility of IP cores is one of the challenges
that need to be addressed carefully. Most of the time, IP cores is having different
input output specifications with new platform. The Wishbone SoC interconnection
Architecture is aim to provide a good solution for SoC integration issues by having
common interface specifications. In this project, the Wishbone on-chip computer
bus for 32-bit cores is implemented in system verilog along with three different
arbitration schemes which are fixed priority, round robin, and priority control. On
top of that, the optimum transfer size for Wishbone bus in terms of bus throughput
and average wait cycle is presented as well. It is found that the optimum transfer size
for Wishbone bus is 64 bytes. Finally, the Wishbone bus is used to examine the bus
performance of different arbitration schemes in Modelsim simulation. Round robin
arbitration scheme is the best among three arbitration schemes in terms of bus
throughput, logic complexity, and maximum wait cycle.

v

ABSTRAK

Dalam perkembangan SoC, keserasian teras IP adalah salah satu cabaran
yang perlu ditangani dengan berhati-hati. Kebanyakan masa, teras IP mempunyai
spesifikasi output input yang berbeza dengan platform yang baru. Wishbone SoC
sambungan arkitek bertujuan untuk menyediakan satu penyelesaian yang baik untuk
isu-isu integrasi SoC dengan mempunyai spesifikasi perantaraan yang sama. Dalam
projek ini, Wishbone bas komputer untuk 32-bit teras dilaksanakan dalam Sistem
Verilog bersama-sama dengan tiga skim pengawal trafik bas yang berlainan. Skim
tersebut ialah keutamaan tetap, robin bulat, dan kawalan keutamaan. Selain itu, saiz
optimum pemindahan untuk bas Wishbone juga dicari dari segi kadar pengeluaran
bas dan kitaran tunggu purata. Saiz optimum pemindahan untuk bas Wishbone
didapati adalah 64 bytes. Akhir sekali, bas Wishbone juga digunakan untuk
memeriksa prestasi bas Wishbone untuk skim pengawal traffic bas yang berbeza
dalam simulasi Modelsim. Skim pengawal traffic bas robin bulat merupakan yang
terbaik antara tiga skim dari segi kadar pengeluaran bas, kerumitan logik, dan kitaran
tunggu maksimum.

vi

TABLE OF CONTENTS

CHAPTER TITLE PAGE
DECLARATION ii
ACKNOWLEDGEMENTS iii
ABSTRACT iv
ABSTRAK v
TABLE OF CONTENTS vi
LIST OF TABLES ix
LIST OF FIGURES x
LIST OF ABBREVIATIONS xii
LIST OF APPENDICES xiii

1 INTRODUCTION 1
1.1 Problem Statement 3
1.2 Research Objectives 4
1.3 Project Scope 4
1.4 Contribution of work 5

2 LITERATURE REVIEW 6
2.1 Introduction 6
2.2 Fundamental of bus system 6
2.3 Related Work 8
2.4 Arbitration Scheme 10

2.4.1 Split bus arbitration 10
2.4.2 Static Arbitration Scheme 11
2.4.3 Dynamic Arbitration Scheme 12

2.5 Allocation Policy 13
2.6 Release Policy 14

vii

2.7 Bus performance 14
2.8 Wishbone Shared Bus Architecture 15

2.8.1 Wishbone Interface Specification 16
2.8.2 Transfer cycle initiation 17
2.8.3 Handshaking protocol 18

3 METHODOLOGY 19
3.1 Introduction 19
3.2 Methodology Flow Chart 19
3.3 Wishbone Standard Single Read/Write Cycle 21
3.4 Wishbone Standard Block Read/Write Cycle 24
3.5 Wishbone shared bus system 26
3.6 Address decoder 29
3.7 Arbitration scheme 29

3.7.1 Fixed Priority arbitration 30
3.7.2 Round Robin arbitration 31
3.7.3 Priority Control arbitration 33

3.8 Optimum data transfer size 37
3.9 Bus performance 38

4 RESULTS AND DISCUSSIONS 40
4.1 Introduction 40
4.2 Validation of Wishbone single read/ write cycle 40
4.3 Validation of Wishbone block read/write cycle 42
4.4 Validation of Arbitration Schemes 44

4.4.1 Fixed Priority Arbiter 44
4.4.2 Round Robin Arbiter 45
4.4.3 Fixed Priority with Waiting Time Control Arbiter 47

4.5 Optimum transfer size 48
4.6 Comparison between Three Arbiters Performance 52

4.6.1 Bus throughput 54
4.6.2 Average wait cycle 56
4.6.3 Percentage of waiting cycle over total cycle 57
4.6.4 Maximum wait cycle 58

5 CONCLUSION 60
5.1 Summary 60

viii

5.2 Future work 61

REFERENCES 62
Appendix A 64
Appendix B 68

ix

LIST OF TABLES

TABLE NO. TITLE PAGE

4.1 Result of Fixed Priority Arbiter for optimum transfer
size 50

4.2 Result of round robin arbiter for optimum transfer
size 50

4.3 Result of Priority Control Arbiter for optimum
transfer size 51

4.4 Performance of three arbitration schemes 53
4.5 Bus throughput 55

x

LIST OF FIGURES

FIGURE NO. TITLE PAGE

2.1 Basic Processor Bus System 7
2.2 Split Bus Arbitration Architecture 11
2.3 TDMA Arbitration Scheme 12
2.4 Centralized Daisy-chained Arbitration Scheme 13
2.5 Standard Wishbone Interface 16
2.6 Standard Wishbone handshaking protocol,

synchronous slave 18
3.1 Methodology Flow Chart 20
3.2 Standard Single Read Cycle 22
3.3 Standard Single Write Cycle 23
3.4 Standard Block Read Cycle 25
3.5 Standard Block Write Cycle 26
3.6 Schematic of Wishbone shared bus [2] 27
3.7 Address map of decoder 29
3.8 ASM chart of Fixed Priority arbiter 31
3.9 ASM chart of Round Robin arbiter 32

3.10 ASM chart of Priority Control arbiter 34
3.11 ASM chart of Priority Control Arbiter 35
3.12 Flow chart of wait timer and max wait 37

xi

3.13 Configuration to find optimum transfer size 38
3.14 Configuration to find bus performance 39
4.1 Wishbone single write cycle 41
4.2 Wishbone single read cycle 42
4.3 Wishbone block write cycle 43
4.4 Wishbone block read cycle 44
4.5 Fixed priority arbiter 45
4.6 Fixed priority arbiter 45
4.7 Round Robin arbiter 46
4.8 Round Robin arbiter 46
4.9 Priority Control arbiter 47

4.10 Priority Control arbiter 48
4.11 Optimum transfer size 51
4.12 Bus throughput 55
4.13 Average wait cycle 57
4.14 Percentage of waiting cycle over total cycle 58
4.15 Maximum wait cycle 59

xii

LIST OF ABBREVIATIONS

Hz - Hertz
VLSI - Very Large Scale Integration
SoC - System on Chip
IP - Intellectual Property
HDL - Hardware Description Language
BFM - Block Functional Module
RTL - Register Transfer Level
CPU - Central Processing Unit
I/O - Input Output
RMW - Read Modify Write
TDMA - Time Division Multiplexing Access
ASM - Algorithmic State Machine
MSB - Most Significant Bit
FSM - Finite State Machine
RST - Reset
CYC - Cycle

xiii

LIST OF APPENDICES

APPENDIX TITLE PAGE

A Top level module of Wishbone Shared Bus 64
B Testbench for Wishbone Shared Bus 68

CHAPTER 1

INTRODUCTION

The world's first single-chip microprocessor was introduced by Intel in
November 1971. It was named as Intel 4004 and has 2300 transistors which can run
at a clock speed of up to 740 KHz [1]. Since then, the compute power of
microprocessor increase exponentially year by year. Besides that, the number of
transistor on a single chip is also following a trend at which it is doubled every 18
months. This trend of transistor number on a single chip is widely known as
Moore's Law which was named after Gordon E. Moore, the co-founder of Intel
Corporation. This law still holds true until today. Today, the latest microprocessor
available in the market is manufactured using 22nm process technology and the
transistor count was more than 1 billion. The latest Intel Core i7 Processor is able to
run at clock speed up to 4.00 GHz which is about 5000 times higher than the first
Intel 4004.

The increasing number of transistor per chip is mainly due to transistor
scaling throughout each technology node. This enabled the possibilities of
performing more features in a chip because more and more transistor can be packed
inside a chip. Therefore the complexity of logic calculation a chip can perform is
also increased. Besides transistor scaling, microarchitecture also play an important
role in microprocessor performance. With the advances in microarchitecture, the

2

compute power of microprocessor can also be increased dramatically. We have seen
aggressive clock scaling and introduction of speculative execution, parallel
instruction issue, out-of-order processing, and larger caches over the course of
microprocessor development [1]. All of these were introduced with the goal of
increasing microprocessor performance.

On top of transistor scaling and microarchitecture enhancement, the VLSI
(Very Large Scale Integration) industry is trending towards SoC (System-on-Chip)
design. SoC is a technology that packages the whole system inside a single chip. It
has many advantages over traditional VLSI design such as fast, low power, small
size, and low cost.

One of the challenges in the SoC world is the pressure of time to market for
chip manufacturers. Because of the fast changing requirements in the consumer
world, chip manufacturers no longer have the luxury of long design cycle time. In
the contrary, the design cycle time need to be minimal so that the product can reach
the market fast and on time. In order to reduce design cycle time, one of the solution
is to maximize the reuse of previously designed and proven working IP and integrate
different IPs together to form a new product with desired features. Hence, the
successfulness of a SoC product depends heavily on effectiveness of integration of
different IP cores.

In order to ease integration work, the compatibility of IP (intellectual
property) cores is a vital issue that needed to be taken care of. Most of the time, IP
cores that are planned for reuse usually are designed earlier and the input output
specifications are inconsistent with the new platform [2]. This will cause IP
integrator to have the need to consider interface design and testing which will cause
complication in integration process [3]. As a result, integration of different IP
becomes harder with non-standard interconnection scheme.

The Wishbone SoC Interconnection Architecture for Portable IP Cores is
introduced to use with semiconductor IP Cores with an aim to provide flexible design
methodology. It is designed to be a reliable and good solution for SoC integration

3

issues. Besides that, it also fosters design reuse for IP cores that follow common
interface specifications. Having a common interface specification is important to
ensure that the integration of different IP cores is at minimal effort. Moreover,
usually IP provider is from different vendor so this is even more important to have
common interface specifications because the integrator might not know very well
with the IP cores itself.

Wishbone arbitration scheme is user defined to arbitrate multiple bus requests
at the same time. When two or more bus masters are requesting to use the shared
system bus at the same time, there is a need of an efficient arbitration scheme to
handle this else there will be bus contention issue since two or more bus master is
sending its respective data at the same time to destination address. This will cause
the data receiving at the bus slave to have errors. Without a good arbitration scheme,
it might cause starvation of bus master whereby certain bus master did not get bus
grant even after waited for long period of cycle time because the shared bus is in
used by other bus master. Therefore, the decision of which bus master getting
granted should be made fair so that every bus master has the equal opportunity to use
the shared bus. Hence, the efficiency of arbiter will have impact on system
performance because the cycle time to complete a transaction is not the same for
different arbitration scheme.

1.1 Problem Statement

The problem statements for this project are as follows:

* IP cores that is designed with non-standard interfaces and transaction
protocol cause extra effort in integration works and slow down design cycle

* The arbitration scheme in Wishbone bus is user defined. There is a lack of
data to compare the performance of different arbitration schemes in
Wishbone bus.

4

1.2 Research Objectives

With the problem statement presented on previous section, this project is aim
to have objectives that are able to solve the problem. Therefore, the research
objectives for this project are as follows:

* To implement the Wishbone on-chip computer bus with arbitration for 32-bit
cores in system verilog

* To examine the performance of different arbitration schemes of the Wishbone

bus

1.3 Project Scope

This project will be focusing on the following scopes:

* A shared bus system is developed with address and data width of 32 bits
using Wishbone bus system in SystemVerilog

* The Wishbone shared bus system is used to examine performance of the
following 3 arbitration schemes that support up to five bus masters:

o Fixed Priority
o Round Robin
o Priority with waiting time control

* Bus master and bus slave are emulated with BFM (Block Functional Module)
in SystemVerilog that can send bus traffic

* Altera Modelsim Starter Edition 10.1d is used as simulation tool

5

1.4 Contribution of Work

The objectives of this project are to implement a 32-bit Wishbone on chip
computer bus and to examine the performance of different arbitration schemes of the
Wishbone bus. There are three different arbitration schemes implemented. The
three arbitration schemes are:

1. Fixed Priority
2. Round Robin
3. Priority with waiting time control

Therefore, this project presents a functional Wishbone Shared bus system
RTL that is come with built in arbiter. The Wishbone Shared bus system is synthesis
ready and is able to integrate with other IP cores that is following standard Wishbone
interface. Also, there will be three different arbitration schemes presented in this
project. Each of the arbitration schemes is supporting up to five bus masters. After
that, this project compares the performance between these three arbitration schemes
quantitatively on Wishbone Shared bus system. It finally come up with a conclusion
of what is the optimum transfer size of Wishbone shared bus system and which
arbitration scheme is a more suitable one compared with the other two.

62

REFERENCES

1. Danowitz, A., et al., C P ^ D S. recorJzMg wz'croprocessor Azsfory. Commun.
ACM, 2012. 55(4): p. 55-63.

2. OpenCores, ^T^HSONE ^ysfew-oM-CAzp (yoC)TMfercoMMecfzoM
^rcAzYecfMre/or Porf^Afe TP Cores. 2010.

3. Gajski, D.D., et al. EsseMfz%f zssMes /o r TP reMse. in DeszgM ^Mfow^fzoM
CoM/ereMce, 2000. ProceeJzMgs o / fAe ^<SP-D^C 2000. ^sz^ ^MJ yoMfA
P%cz/zc. 2000.

4. Null, L. and J. Lobur, TAe EsseMfz^f o / C o^M fer Org^Mzz^fzoM ^MJ
^rcAzYecfMre. 2003: Jones and Bartlett.

5. Patterson, D A . and J.L. Hennessy, C o^M fer Org%Mzz%fzoM %MJ DeszgM. 3rd
edition ed. 2005: Morgan Kaufmann.

6. Sharma, M. and D. Kumar, fFZSHSONE S ^ y ̂ ^CHTTECT^^KE - ̂ y ^ ^ ^ E y
^ND CO^P^^T^ON. International Journal of VLSI design &
Communication Systems (VLSICS), 2012. 3(2).

7. ARM. ^ ^ S ^ ypecz/zc%fz'oM (rev 2.0). 1999; Available from:
http://www.arm.com.

8. Altera. ^v%foM AMs specz/zc^fzoM. ^e/ereMce ^^MM^f. 2003; Available from:
http://www.altera.com.

9. IBM. CoreCoMMecf AMs ^rcAzYecfMre. 1999; Available from:
www.ibm.com/chips/products/coreconnect/

10. Sharma, M. and D. Kumar. DeszgM %MJ syMfAeszs o/^sAAoMe AMs D^fq/7ow
z'Mfer/^ce r̂cAzYecfMre /o r 6*oC z'Mfegr̂ fzoM. in TMJẑ CoM/ereMce (TNDTCON),
2072 ^MMM̂ f TEEE. 2012.

11. Conti, M., et al., Per/orw%Mce ^M^fyszs o / Jz//ereMf %rAzYr%fzoM ^fgorzYAws o /
fAe ^H S AMs, in ProceeJzMgs o / A 47sf ^MMM̂ f DeszgM ^Mfow^fzoM
CoM/ereMce. 2004, ACM: San Diego, CA, USA. p. 618-621.

12. Ahmad Zabidi, M.M.i. and S. Rajagopal, OpeM yoMrce wzcroprocessor ^MJ
oM-cAzp-AMs /o r sysfew-oM-cAzp, in ^Jv^Mces TM EwAeJJeJ yysfews. 2008,
Penerbit UTM: Johor. p. 1-20.

13. Lu, R. and C.-K. Koh, ^ AzgA ^er/orw%Mce AMs cowwMMzc f̂zoM %rcAzYecfMre
fAroMgA AMs spfzYfz'Mg, in ProceeJzMgs o / fAe 2004 ^sz^ %MJ yoMfA P^cz/zc
DeszgM ^Mfow f̂z'oM CoM/ereMce. 2004, IEEE Press: Yokohama, Japan. p. 751­
755.

http://www.arm.com/
http://www.altera.com/
http://www.ibm.com/chips/products/coreconnect/

63

14. Ruibing, L., C. Aiqun, and K. Cheng-Kok, ^^MF^-FMs/ ^ NzgA Per/orw%^ce
FMs r̂cAzYec^Mre /o r ^ys^ew-o^-CAzps. Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, 2007. 15(1): p. 69-79.

15. Chang Hee, P., et al. TAe e /c z 'e ^ ^Ms %rMr%?o scAewe m ^oC e^vzro^we^^.
in ^ys^ew-o^-CAzp /o r ^e%/-Tzwe ^pp/zc%^zo^s, 200J. ProceeJz^gs. TAe J r J
TEEE 7^^er^%^zo^%/ ^For^sAop o^. 2003.

16. Kandasamy, S., J2 FzY Low-speeJ FMs ^ys^ew For Mzps ^^r^ ^ ^ J Ps2
7^er/%cmg, in F%cM/(y o/7^/orw%^zo^ %^J CowwMMzc%?o TecA^o/ogy. 2010,
University of Tunku Abdul Rahman.

17. Poletti, F., et al., Per/orw%^ce ^^%/yszs o / r̂^zYr%^zo ̂ Po/zczes /o r ^oC
CowwMMz'c%%oM ^rcAzYec^Mres. Design Automation for Embedded Systems,
2003. 8(2-3): p. 189-210.

18. Loghi, M., et al. ^^%/yzz^g o^-cAzp cowwM^zc%^zo ̂ ẑ % MP^oC e^vzro^we^^.
in ProceeJz^gs o / ̂ Ae co^/ere^ce o^ Deszg^, %M?ow%?o %^J ^es ̂z ̂FMrope-
Fo/Mwe 2. 2004. IEEE Computer Society.

19. Shrivastav, A., G. Tomar, and A.K. Singh. Per/orw%^ce Cowp%rzso^ o /
^M F^ FMs-F%seJ ^ys^ew-O^-CAzp CowwMMzc%?o Pro^oco/. in
CowwM^zc%^zo ̂ ^ys^ews %^J Ne^wor^ TecA^o/ogzes 2077
7^er^%?zo^%/ Co^/ere^ce o^. 2011. IEEE.

20. Christiansen, T. and N. Torkington, Per/ coo%^oo^, seco^J eJzYzo .̂ 2003:
O'Reilly Media, Inc. 976.

