GENERALIZED PREDICTIVE CONTROL APPROACH FOR A MODIFIED SINGLE ACTING PNEUMATIC CYLINDER

NU'MAN DIN BIN MUSTAFA

UNIVERSITI TEKNOLOGI MALAYSIA

"I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of the degree of Master of Engineering (Electrical)"

Signature:Name of Supervisor: IR. DR. AHMAD 'ATHIF MOHD FAUDZIDate: 21/9/2014

GENERALIZED PREDICTIVE CONTROL APPROACH FOR A MODIFIED SINGLE ACTING PNEUMATIC CYLINDER

NU'MAN DIN BIN MUSTAFA

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Engineering (Electrical Engineering)

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > SEPTEMBER 2014

I declare that this thesis "Generalized Predictive Control Approach for a Modified Single Acting Pneumatic Cylinder" is the result of my own research except as cited as in the reference. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	·····
Name	: NU'MAN DIN BIN MUSTAFA
Date	: 21/9/2014

Specially dedicated to my beloved family especially my mother Latifah binti Abu talib for her endless prayer, encouragement and blessings

ACKNOWLEDGEMENT

I would like to give my sincere appreciation to my dedicated and hardworking supervisor, Ir. Dr. Ahmad 'Athif bin Mohd Faudzi for his guidance, support and endless effort in order to make sure this project finish on time. Without his reminder, this project would not meet its objectives.

I would also like to give my deepest thanks to my beloved family especially my mother, Latifah binti Abu talib and my friends for their support and advices. They play a big role in giving me continuous motivation to finish my study.

I would also want to give my thanks to my colleague that helps and gives idea for my project especially Mr. Khairuddin Osman, Mohamed Omer, Abdul Rahman and others. Their knowledge and related work had given me new knowledge and solutions for my project.

ABSTRACT

Pneumatic actuator is a device that converts air pressure to possible motions such as linear and rotary motion. Although the pneumatic actuator offers many advantages it is difficult to control. This is due to the nonlinearities involved such as friction and air compressibility. The equipment used in this research is the Intelligent Pneumatic Actuator (IPA). Previously, Proportional-Integral (PI) has been used as the controller for the IPA. Based on the previous result, a controller called generalized predictive controller (GPC) is proposed. Compared to PI, this controller has the capability to take into account the nonlinearity factor which is very important in this research. There are two types of GPC proposed in this research which are GPC with First Order Time Delay (GPC-FOTD) and GPC with Higher Order (GPC-HO). This research starts with the implementation of PI, GPC-FOTD and GPC-HO controllers for position and force control in simulations. Then, the simulation result is validated with the real-time experiments. There are two experiments for position control, which are position control with and without loads and one experiment for force control. Then, a Haptic Pneumatic Device (HPD) is developed in order to emulate a spring by combining the position and force control. By implementing the spring characteristic to the pneumatic device, a human machine interaction concept is applied to the device. In summary, GPC-FOTD shows better performance compared to GPC-HO and PI in terms of stability and better response for position control. For force control the GPC-HO shows better performance compared to other controllers in terms of tracking and accuracy. Then for the spring characteristic implementation, response of force versus displacement is presented where the results show stiffness coefficient (K_s) is directly proportional to the output force generated. This device together with GPC controller are capable of giving better results in terms of spring characteristic emulation control compared to the previous research on IPA. These results and application hopefully can be used to help people such as in rehabilitation sector, as exercise equipment and entertainment tools as well as comparison data for other controller development.

ABSTRAK

Penggerak pneumatik adalah alat yang menukarkan tekanan udara kepada beberapa gerakan seperti gerakan linear dan berputar. Walaupun penggerak pneumatik menawarkan banyak kelebihan ia adalah sukar untuk dikawal. Ini adalah disebabkan oleh faktor tak lelurus yang terlibat seperti geseran dan kemampatan udara. Alat yang digunakan dalam kajian ini adalah Pneumatik Aktuator Pintar (IPA). Sebelum ini, Proportional-Integral (PI) telah digunakan sebagai pengawal untuk IPA. Berdasarkan keputusan kajian, pengawal yang dipanggil Pengawal Ramalan Umum (GPC) dicadangkan sebagai pengawal baru. Berbanding PI, pengawal ini mempunyai keupayaan untuk mengambil kira faktor tak lelurus dan ianya adalah penting dalam kajian ini. Terdapat dua jenis GPC yang dicadangkan dalam kajian ini iaitu GPC dengan Kelewatan Masa Peringkat Pertama (GPC-FOTD) dan GPC dengan peringkat yang Lebih Tinggi (GPC-HO). Kajian ini bermula dengan pelaksanaan PI, GPC-FOTD dan pengawal GPC-HO bagi kedudukan dan kuasa kawalan dalam simulasi. Kemudian, hasil simulasi disahkan dengan eksperimen masa nyata. Terdapat dua eksperimen untuk kawalan kedudukan, iaitu kawalan kedudukan dengan dan tanpa beban dan satu eksperimen untuk kawalan daya. Kemudian, satu Alat Haptik Pneumatik (HPD) dihasilkan untuk menghasilkan satu ciri emulasi spring dengan menggabungkan kawalan kedudukan dan kuasa. Dengan melaksanakan ciri spring untuk peranti pneumatik, satu konsep interaksi mesin manusia dapat diadaptasikan ke dalam peranti. Ringkasnya, GPC-FOTD menunjukkan prestasi yang lebih baik berbanding dengan GPC-HO dan PI dari segi tindak balas yang stabil dan lebih baik untuk kawalan kedudukan. Untuk kawalan daya GPC-HO menunjukkan prestasi yang lebih baik berbanding dengan pengawal lain dari segi pengesanan dan ketepatan. Kemudian untuk pelaksanaan ciri spring, tindak balas tenaga melawan anjakan dibentangkan. Keputusan menunjukkan pekali pelembut (K_s) adalah berkadar langsung dengan daya keluaran. Peranti ini bersama-sama dengan pengawal GPC mampu memberi hasil yang lebih baik daripada segi kawalan emulasi ciri spring berbanding dengan penyelidikan sebelumnya dengan IPA. Keputusan dan aplikasi ini diharapkan boleh digunakan untuk membantu orang ramai seperti dalam bidang pemulihan, alat latihan dan alat hiburan serta sebagai data perbandingan untuk pembangunan pengawal yang lain.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	V
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	Х
	LIST OF FIGURES	xi
	LIST OF ABBREVIATIONS	xiv
	LIST OF SYMBOLS	xvi
1	INTRODUCTION	1
	1.1 Overview	1
	1.2 Problem Statement	2
	1.3 Research Objectives	2
	1.4 Scope of Work	3
	1.5 Thesis Outline	3
2	LITERATURE REVIEW	5
	2.1 Introduction	5
	2.2 Intelligent Pneumatic Actuator	6
	2.3 Generalized Predictive Controller Overview	8

	2.4	Positio	on Control	11
	2.5	Force	and Spring Characteristic	13
	2.6	Huma	n Machine Interaction (HMI) Application	16
	2.7	Summ	nary	19
3	ME	THOD (OLOGY	20
	3.1	Introd	uction	20
	3.2	Pneun	natic Actuator Architecture	21
		3.2.1	Working operation for pneumatic actuator	22
		3.2.2	Pneumatic Actuator Model	24
	3.3	Contro	oller Design	26
	3.4	Simul	ation and Experiment	27
		3.4.1	Position and Force Simulation	29
		3.4.2	Position Control with/without loads	29
		3.4.3	Force	30
		3.4.4	Spring Characteristic Simulation	31
	3.5	Applic	cation	32
	3.6	Summ	nary	33
4	CON	NTROL	LLER APPROACH	35
	4.1	GPC a	algorithm	35
		4.1.1	GPC-First order with time delay (FOTD)	35
		4.1.2	GPC Algorithm for Higher Order (HO) Model	39
		4.1.3	Proportional-Integral (PI) Controller	44
	4.2	Contro	oller Implementation	44
		4.2.1	GPC-First order with time delay (FOTD)	45
		4.2.2	GPC-higher order model (HO)	46
		4.2.3	Proportional-integral (PI) controller	48

48

4.3	Summary
-----	---------

5	RES	SULTS AND DISCUSSIONS	49
	5.1	Introduction	49
	5.2	GPC parameter selection	51
	5.3	PWM converter	57
	5.4	Position control	58
		5.4.1 Simulation and Real-time experiment without load	58
		5.4.2 Real time experiment with loads	63
	5.5	Force control	67
	5.6	Spring function	71
	5.7	Haptic Pneumatic Device	75
		5.7.1 Control strategies	76
	5.8	Summary	77
6	CON	NCLUSION AND RECOMMENDATION	78
	6.1	Conclusion	78
	6.2	Recommendation	79
REFEREN	CES		80
Appendices	A-B	:	87-85

LIST OF TABLES

TABLE NO.

TITLE

PAGE

2.1	Comparison between new and previous cylinder [6, 7]	7
2.2	Details on the improved pneumatic cylinder	7
3.1	Pneumatic cylinder parts [4, 8, 48, 49]	21
5.1	Analysis table for step responses when N_2 varied	52
5.2	Analysis table for step responses when N_u is varied	54
5.3	Analysis table for step responses when λ is varied	55
5.4	Analysis table for step responses when alpha is varied	57
5.5	Analysis table for position control simulation GPC-FOTD	
	vs. GPC-HO vs. PI	61
5.6	Analysis table for position control real-time experiment	
	GPC-FOTD vs. GPC-HO	63
5.7	Analysis table for real time experiment position tracking	
	with horizontal loads	66
5.8	Analysis table for real time experiment position tracking	
	with vertical loads	67
5.9	Analysis criteria for force control simulation vs.	
	experiment.	70
5.10	Analysis table for stiffness characteristic implementation	73

LIST OF FIGURES

FIGURE NO. TITLE

PAGE

2.1	Literature review flow chart	5
2.2	Intelligent Pneumatic Cylinder developed by [6]	6
2.3	Active 80-faced Polyhedron for Haptic Physical Human-	
	Machine Interface and an intelligent pneumatic actuator	
	develop by [7].	7
2.4	Pneumatic Actuated Seating System (PASS) [4]	8
2.5	Experimental results of compliance control [4]	15
2.6	Concept underlying between human machine interactions	
	[43].	17
3.1	Research flow chart	20
3.2	Intelligent Pneumatic Actuator [4]	21
3.3	Pneumatic actuator illustration	23
3.4	Poles and zeros for position transfer function	25
3.5	Poles and zeros for force transfer function	26
3.6	Controller design workflow	26
3.7	Simulation and experiment workflow	28
3.8	Position and Force block diagram	29
3.9	Experiment setup for position control without load	29
3.10	Experiment setup for position control with load (a)	
	Vertical setup (b) Horizontal setup	30
3.11	Force experiment setup	31
3.12	Damping, spring and mass system [4]	32
3.13	Spring (stiffness) block diagram	32
3.14	Haptic pneumatic device (HPD) design (a) top view, (b)	
	side view and (c) front view	33

4.1	Reaction Curve Method (RCM)	36
4.2	GPC-FOTD control scheme	45
5.1	Process flow of this chapter	50
5.2	Output response when N_2 is varied (a) output (b) control	
	signal	52
5.3	Step response when N_u is varied (a) output (b) control	
	signal	53
5.4	Step response when λ is varied (a) output (b) control	
	signal	55
5.5	Step response when alpha is varied (a) output (b) control	
	signal	56
5.6	The signals flow	58
5.7	Simulink block diagram for position control simulation	59
5.8	Simulink block diagram for real-time experiment	59
5.9	Simulation step response for GPC-FOTD vs. GPC-HO vs.	
	PI	60
5.10	Simulation multistep response for GPC-FOTD vs. GPC-	
	HO vs. PI	60
5.11	Real-time experiment step response for GPC-FOTD vs.	
	GPC-HO vs. PI	62
5.12	Real-time experiment multistep response for GPC-FOTD	
	vs. GPC-HO vs. PI	62
5.13	Step response for real time position control with loads (a)	
	Horizontal (b) Vertical	64
5.14	Multistep response for real time position control with	
	loads (a) Horizontal (b) Vertical	65
5.15	Simulink block diagram for force control simulation	68
5.16	Simulink block diagram for force control real time	
	experiment	68
5.17	Step response comparison for force control simulation	
	(Sim) vs. experiment (Exp)	69
5.21	Multistep response comparison for force control	
	simulation (Sim) vs. experiment (Exp)	70

5.19	Simulation block diagram for stiffness characteristic	
	implementation	71
5.23	Real-time experiment block diagram for stiffness	
	characteristic implementation	72
5.21	Stiffness characteristic result for real-time experiment	
	implementation	73
5.22	Experimental setup for pneumatic actuator stiffness	
	characteristic analysis	74
5.23	Force vs. Displacement response with different value of K_s	74
5.24	Haptic pneumatic device (HPD) (a) top view, (b) side	
	view and (c) front view	75
5.25	Control implementation for Pneumatic Device	76
5.26	Haptic pneumatic device (HPD) with human interaction	76

LIST OF ABBREVIATIONS

HPD	-	Haptic Pneumatic Device
HMI	-	Human machine interaction
K_s	-	Stiffness coefficient
GPC	-	Generalized Predictive Controller
PSoC	-	Programmable System on Chip
PI	-	Proportional-Integral
DAQ	-	Data Acquisition
PASS	-	Pneumatic Actuated Seating System
PC	-	Personal Computer
I ² C	-	Inter-Integrated Circuit
LED	-	Light-Emitting Diode
DC	-	Direct Current
PWM	-	Pulse Width Modulation
MPWM	-	Modified Pulse Width Modulation
PID	-	Proportional-Integral-Derivative
SMC	-	Sliding Mode Controller
MIMO	-	Multiple Input Multiple Output
ANFIS	-	Adaptive Neural Fuzzy Inference System
MPC	-	Model Predictive Controller
MPHC	-	Model Predictive Heuristic Control
MAC	-	Model Algorithm Control
DMC	-	Dynamic Matrix Controller
EHAC	-	Extended Horizon Adaptive Control
EPSAC	-	Extended Predictive Control Self Adaptive Control
GMV	-	Generalized Minimum Variance
MV	-	Minimum Variance
SCADA	-	Supervisory Control And Data Acquisition

SISO	-	Single-input/single-output
ARX	-	Autoregressive Model with External Input
BTCS	-	Brake Based Vehicle Traction Control
USM	-	Ultrasonic Motors
DOF	-	Degrees Of Freedom
PHI	-	Pneumatically Driven Haptic Interface
ARMAX	-	Autoregressive Moving Average with Exogenous Inputs
FOTD	-	First order with time delay
CARIMA	-	Controller Auto-Regressive Integrated Moving Average
НО	-	Higher Order model
IAE	-	Integral Absolute Error
ISE	-	Integral Square Error

LIST OF SYMBOLS

ŷ	-	Prediction output of the system
у	-	System output
W	-	Reference set point
$E\{ \}$	_	Prediction set
и	-	Control signal
N_1	-	Minimum prediction horizon
N_2	-	Maximum prediction horizon
N _u	-	Control horizon
δ	-	Weighting factor
λ	-	Weighting factor
F	-	Generated output force
K_s	-	Stiffness coefficient
x	-	Displacement.
F_d	-	Driving force,
F	-	Applied force,
F_{f}	-	Frictional force,
т	-	Mass of the piston
ÿ	-	Acceleration
A_1, A_2	-	Corresponding cross sectional area in chamber 1 and 2
τ_d	-	Dead time
T_s	-	Sampling time
a,b	-	Parameter for FOTD model.
t_1	-	The time when the output reaches 28.3% of its steady state value
t_2	-	The time when the output reaches 63.2% of its steady state value
A, B	-	The polynomial for different backward shift operator
		-

n - All integer.
n - All line yet

- x(t) Disturbance.
- e(t) Zero mean white noise,
- C Noise polynomial
- α An adjustable value that influence the dynamic response of the system
- K_p , Tuning parameters.
- K_i Tuning parameters.
- K_d Tuning parameters.
- T_R Rise time
- %OS Percentage of overshoot
- $%e_{SS}$. Percentage of steady state error
- *C_s* Control signal for PWM conversion
- T_S Settling time

CHAPTER 1

INTRODUCTION

1.1 Overview

Pneumatic is a device that used air pressure as it power source. It converts the air pressure into a possible motion such as linear and rotary. Pneumatic actuator have been largely used in the industries and also actively used for research purpose. This is due to the advantages that the pneumatic actuator offers such as high power-to-weight ratio, relatively low cost, easy to maintain, lighter, and have simple structure compare to other actuators that available in the market [1]. In addition, the pneumatic actuator also is an environmental friendly device because it used air [2]. Example of pneumatic application such as to position controls applied in robotic manipulator, loading/unloading systems, air balance systems and gripper. Despite of all the advantages compared to electrical actuator used in robot and machines, it is difficult to control. This is due to the nonlinear factor involved such as the nonlinearity of the valve, compressibility of air and friction [3]. Therefore, many researchers put their effort in order to make the pneumatic actuator controllable for position and force control by proposing complex controller, new control strategies and etc. [3].

Pandian et. al [2] proved that air motor can be used as an alternative for electric powered motor. Although it is difficult to control pneumatic motor compared to electric motor, with certain control approach a better results can be achieved in terms of high accuracy, low steady state error and fast response.

Pneumatic actuator can be divided into two categories which are piston type and rotary type. Both of this actuator type uses air pressure as its power source. From the historical development, the development of the pneumatic actuator were created since the 16th century [4]. Since then, there are many developments regarding the pneumatic actuator in order to suit different automation, industry and applications. Now at the 20th century, the pneumatic actuator has evolved with complex and better sensors. For example [4] develop an intelligent pneumatic actuator with combination of different micro precision sensors and valve. This later on was applied to an application called Pneumatic Actuator Seating System [4]. The same actuator from the research will be used in this research however with different controller algorithm and methodology.

1.2 Problem Statement

- 1. The pneumatic actuator is difficult to control due to the nonlinear factor involved [3].
- 2. Although result from the previous work is good with ability to do tracking and fast response, further improvement can be done such as low transient response, higher accuracy and better tracking [4].

1.3 Research Objectives

The objectives of this research are:

1. To design a Generalized Predictive Controller (GPC) for pneumatic cylinder position and force control.

 To compare the GPC controller for position control and force control performance with existing PI (Proportional-Integral) controller in simulation and real time experiment.

1.4 Scope of Work

The scopes of this research are as below:

- 1. The controller development is using MATLAB-Simulink as the platform.
- The optimization of the GPC controller will be based on trial and error and past knowledge of the plant. Although the optimization is based on trial and error, certain guideline is follow which will be explained in Chapter 3 section 3.4.1.
- The controller performance will be based on ISE and IAE. Lower ISE and IAE will resulted in good control performance in terms of lower cumulative error.

1.5 Thesis Outline

Chapter one is discussing about the thesis overview, problem statements, research objectives and scopes of this research. Then, chapter two present the literature review regarding the intelligent pneumatic development, GPC history, position control, force and Spring characteristic and lastly about human machine interaction. Chapter 3 is discussing about the research methodology used in this research from the start until the results meet the objective requirement. Next is chapter 4, which is the controller approach. In this chapter, the GPC derivation PI controllers are discussed. Chapter 5 is the results and discussions. In this chapter, the

research results for position and force control is presented. In addition, the device designed for spring characteristic implementation is also presented. Lastly, is chapter six which is the conclusion and recommendation. In this chapter, the thesis conclusion which reflected the thesis objective is presented. Meanwhile, for further improvement suggestion is presented in the recommendation.

•

REFERENCES

- [1] A. Gentile, N. I. Giannoccaro and G. Reina. Experimental tests on position control of a pneumatic actuator using on/off solenoid valves. *Industrial Technology, 2002. IEEE ICIT '02. 2002 IEEE International Conference.* 2002. Vol. 1 555-559.
- [2] S. R. Pandian, F. Takemura, Y. Hayakawa and S. Kawamura. Control performance of an air motor-can air motors replace electric motors? *Robotics and Automation, 1999. Proceedings. 1999 IEEE International Conference* 1999. Vol. 1 518-524.
- [3] K. Ahn and S. Yokota. Intelligent switching control of pneumatic actuator using on/off solenoid valves. *Mechatronics*. 2005. Vol. (15), 683-702.
- [4] A. A. M. Faudzi. Development of Intelligent Pneumatic Actuators and Their Applications to Physical Human-Machine Interaction System. Doctor of Philosophy. Okayama University; September, 2010.
- [5] H. I. Ali, S. B. B. M. Noor, S. Bashi and M. Marhaban. A review of pneumatic actuators (modeling and control). *Australian Journal of Basic and Applied Sciences*. 2009. Vol. (3), 440-454.
- [6] K. Suzumori, J. Tanaka and T. Kanda. Development of an intelligent pneumatic cylinder and its application to pneumatic servo mechanism. *Advanced Intelligent Mechatronics. Proceedings*, 2005 IEEE/ASME International Conference 2005. Vol. 479-484.
- T. Kubo, Y. Kobayashi, A. M. Faudzi and K. Suzumori. Development of Active 80-faced Polyhedron for haptic physical human-machine interface. 2009.
- [8] A. A. M. Faudzi, K. Suzumori and S. Wakimoto. Development of an Intelligent Pneumatic Cylinder for Distributed Physical Human–Machine Interaction. *Advanced Robotics*. 2009. Vol. (23), 203-225.

- [9] A. A. M. Faudzi, K. Suzumori and S. Wakimoto. Development of an Intelligent Chair Tool System Applying New Intelligent Pneumatic Actuators. Taylor & Francis; 2010.
- [10] C. B. Eduardo F. Camacho Model Predictive Control. Springer. 1999
- [11] A. I. Propoi. Use of LP methods for synthesizing sampled-data automatic systems. *Automn Remote Control.* 1963. Vol. (24), 837.
- [12] C. E. García, D. M. Prett and M. Morari. Model predictive control: Theory and practice—A survey. *Automatica*. 1989. Vol. (25), 335-348.
- [13] D. W. Clarke, C. Mohtadi and P. S. Tuffs. Generalized predictive control— Part I. The basic algorithm. *Automatica*. 1987. Vol. (23), 137-148.
- [14] K. J. Åström and B. Wittenmark. On self tuning regulators. *Automatica*. 1973. Vol. (9), 185-199.
- [15] D. W. Clarke, C. Mohtadi and P. S. Tuffs. Generalized Predictive Control— Part II Extensions and interpretations. *Automatica*. 1987. Vol. (23), 149-160.
- [16] D. W. Clarke. Application of generalized predictive control to industrial processes. *Control Systems Magazine*, *IEEE*. 1988. Vol. (8), 49-55.
- [17] B. W. Hogg and N. M. El-Rabaie. Generalized predictive control of steam pressure in a drum boiler. *Energy Conversion, IEEE Transactions* 1990. Vol. (5), 485-492.
- [18] C. Bordons and E. F. Camacho. A generalized predictive controller for a wide class of industrial processes. *Control Systems Technology, IEEE Transactions* on. 1998. Vol. (6), 372-387.
- [19] M. Suichies, D. Leroux, C. Dechert and A. Trusiak. An implementation of generalized predictive control in a flotation plant. *Control Engineering Practice*. 2000. Vol. (8), 319-325.
- [20] S. Anwar. Brake based Vehicle Traction Control via Generalized Predicitve 2003.
- [21] N. Bigdeli and M. Haeri. Position control of an ultrasonic motor using generalized predictive control. *Control, Automation, Robotics and Vision Conference, 2004. ICARCV 2004 8th.* 2004. Vol. 3 1957-1962.
- [22] L. Jinhua, Y. Mizukami, Y. Wakasa and K. Tanaka. Intelligent control for pneumatic servo system. SICE 2003 Annual Conference. 2003. Vol. 3 3193-3198.

- [23] S. Chillari, S. Guccione and G. Muscato. An experimental comparison between several pneumatic position control methods. *Decision and Control*, 2001. Proceedings of the 40th IEEE Conference on. 2001. Vol. 2 1168-1173 vol.2.
- [24] T. Nguyen, J. Leavitt, F. Jabbari and J. E. Bobrow. Accurate Sliding-Mode Control of Pneumatic Systems Using Low-Cost Solenoid Valves. *Mechatronics, IEEE/ASME Transactions on.* 2007. Vol. (12), 216-219.
- [25] G. M. Bone and N. Shu. Experimental Comparison of Position Tracking Control Algorithms for Pneumatic Cylinder Actuators. *Mechatronics*, *IEEE/ASME Transactions on*. 2007. Vol. (12), 557-561.
- [26] A. K. Paul, J. E. Mishra and M. G. Radke. Reduced order sliding mode control for pneumatic actuator. *Control Systems Technology, IEEE Transactions on.* 1994. Vol. (2), 271-276.
- [27] J. Song and Y. Ishida. A robust sliding mode control for pneumatic servo systems. *International Journal of Engineering Science*. 1997. Vol. (35), 711-723.
- [28] M.-C. Shih and M.-A. Ma. Position control of a pneumatic cylinder using fuzzy PWM control method. *Mechatronics*. 1998. Vol. (8), 241-253.
- [29] R. B. van Varseveld and G. M. Bone. Accurate position control of a pneumatic actuator using on/off solenoid valves. *Mechatronics, IEEE/ASME Transactions* 1997. Vol. (2), 195-204.
- [30] J.-Y. Lai, C. H. Menq and R. Singh. Accurate Position Control of a Pneumatic Actuator. *American Control Conference*, 1989. 1989. Vol. 1497-1502.
- [31] X. G. a. K. Wang, C. Self-tuning predictive control with forecasting factor for control of pneumatic lumber handling systems. *Int. J. Adapt. Control Signal Process.* 2000. Vol. (14), 533–557.
- [32] X. G. Wang and K. Chris Kyung-Hyun. Improved control of pneumatic lumber-handling systems. *Control Systems Technology, IEEE Transactions* on. 2001. Vol. (9), 458-472.
- [33] S. Qiang and L. Fang. The Direct Approach to Unified GPC Based on ARMAX/CARIMA/CARMA Model and Application for Pneumatic Actuator Control. *Innovative Computing, Information and Control, 2006. ICICIC '06. First International Conference* 2006. Vol. 1 336-339.

- [34] S. Qiang, L. Fang and R. D. Findlay. Generalized Predictive Control for a Pneumatic System Based on an Optimized ARMAX Model with an Artificial Neural Network. *Computational Intelligence for Modelling, Control and Automation, 2006 and International Conference on Intelligent Agents, Web Technologies and Internet Commerce, International Conference.* 2006. Vol. 223-223.
- [35] Q. Song and F. Liu. Two effective control algorithms for a pneumatic system. *Technology and Innovation Conference*, 2006. *ITIC 2006. International*. 2006. Vol. 1980-1985.
- [36] D. Ben-Dov and S. E. Salcudean. A force-controlled pneumatic actuator. *Robotics and Automation, IEEE Transactions on.* 1995. Vol. (11), 906-911.
- [37] M. O. E. AbdelRahman. System Identification and PI Neuro-Fuzzy Control of a Pneumatic Actuator. Master of Engineering. Universiti Teknologi Malaysia; 2013.
- [38] O. F. Hikmat. Observer-Based Receding Horizon Controller for Position and Force Control of a Pneumatic Actuator. Master of Engineering. Universiti Teknologi Malaysia; 2013.
- [39] P. Chaewieang, K. Sirisantisamrit and T. Thepmanee. Pressure control of pneumatic-pressure-load system using generalized predictive controller. *Mechatronics and Automation, 2008. ICMA 2008. IEEE International Conference* 2008. Vol. 788-791.
- [40] K. Imin, M. R. Cutkosky and R. S. Johansson. Robotic stiffness control and calibration as applied to human grasping tasks. *Robotics and Automation*, *IEEE Transactions on*. 1997. Vol. (13), 557-566.
- [41] S. Xiangrong and M. Goldfarb. On the enhanced passivity of pneumatically actuated impedance-type haptic interfaces. *Robotics, IEEE Transactions on*. 2006. Vol. (22), 470-480.
- [42] X. Shen and M. Goldfarb. Simultaneous Force and Stiffness Control of a Pneumatic Actuator. *Journal of Dynamic Systems, Measurement, and Control.* 2007. Vol. (129), 425-434.
- [43] M. A. Srinivasan and C. Basdogan. Haptics in virtual environments: Taxonomy, research status, and challenges. *Computers & Graphics*. 1997. Vol. (21), 393-404.

- [44] M. Takaiwa and T. Noritsugu. Application of pneumatic parallel manipulator as haptic human interface. *Advanced Intelligent Mechatronics*, 1999.
 Proceedings. 1999 IEEE/ASME International Conference on. 1999. 185-190.
- [45] H. Kazerooni. Human power extender: an example of human-machine interaction via the transfer of power and information signals. Advanced Motion Control, 1998. AMC '98-Coimbra., 1998 5th International Workshop on. 1998. Vol. 565-572.
- [46] Y. Hurmuzlu, A. Ephanov and D. Stoianovici. Effect of a Pneumatically Driven Haptic Interface on the Perceptional Capabilities of Human Operators. *Presence: Teleoperators and Virtual Environments.* 1998. Vol. (7), 290-307.
- [47] T. Kubo, Y. Kobayashi, A. M. Faudzi and K. Suzumori. Development of Active 80-faced Polyhedron for haptic physical human-machine interface. *Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on.* 2009. Vol. 1259-1264.
- [48] A. A. M. Faudzi, K. Suzumori and S. Wakimoto. Development of an Intelligent Chair Tool System Applying New Intelligent Pneumatic Actuators. Advanced Robotics. 2010. Vol. (24), 1503-1528.
- [49] A. A. M. Faudzi, K. Suzumori and S. Wakimoto. Design and control of new intelligent pneumatic cylinder for intelligent chair tool application. Advanced Intelligent Mechatronics, 2009. AIM 2009. IEEE/ASME International Conference. 2009. Vol. 1909-1914.
- [50] K. Osman, A. A. M. Faudzi, M. F. Rahmat, N. m. D. Mustafa, M. A. Azman and K. Suzumori. System Identification model for an Intelligent Pneumatic Actuator (IPA) system. *Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on.* 2012. Vol. 628-633.
- [51] P. Cominos and N. Munro. PID controllers: recent tuning methods and design to specification. *Control Theory and Applications, IEE Proceedings* -. 2002. Vol. (149), 46-53.
- [52] D. W. Clarke and C. Mohtadi. Properties of generalized predictive control. *Automatica*. 1989. Vol. (25), 859-875.
- [53] C. B. Eduardo F. Camacho Model Predictive Control. *Springer*. 1999.
- [54] T. E. Marlin. Designing Processes and Control Systems for Dynamic Performance. *Process Control.* (second edition).