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ABSTRACT 

In both civilized and undeveloped countries Tuberculosis is a fundamental 

killer infective disease and can be considered as a threat among them. Furthermore, 

due to an increment of drug resistance and substantial level of TB occurrence in 

human immunodeficiency, virus-infected individuals. Tuberculosis disease is often 

the result of the bacteria sequestered inside lung macrophages being activated when 

the immune system of the infected individual is weakened. Bacterium can spend 

many years in a dormant state inside lung granulomas. Mycobacterium tuberculosis 

would have two small heat shock proteins: Acr1 and Acr2. Like all SHSPs, these two 

heat shock proteins share a domain of 90 amino acids called the α-crystallin domain 

and have divergent N- and C-terminal extensions. The α crystallin protein (sHSP)2 

family is ubiquitous throughout nature and carries out a general cellular protective 

role in preventing aggregation of denatured proteins and facilitating subsequent 

refolding by other chaperones. As for the Mycobacterium tuberculosis perspective, 

this function plays an ultimate role which must be able to survive an inhospitable 

environment while sequestered within phagosomes of alveolar macrophages. This 

study was actually considered exploration of the possibilities to immobilize the 

protein interaction with water vacuum interface. A clue of the possibility of 

immobilization the protein on the surface would be provided by predicting the 

conformation of the protein adopted on the surface.  Molecular dynamics (MD) 

simulation was carried out to study adsorbed conformation of α crystallin at the 

water vacuum interface. The preliminary results showed that there were some 

conformational changes of protein in water phase while the protein was not 

preferentially adsorbed on the surface at that particular orientation. As the result, 

there was no significant change of αcrystallin protein conformation. 
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ABSTRAK 

Tuberculosis adalah pembunuh asas bagi penyakit berjangkit dan boleh 

dianggap sebagai ancaman di negara-negara yang bertamadun dan mundur. Oleh itu, 

disebabkan oleh rintangan dadah tinggi dan tahap besar berlakunya TB bagi manusia 

yang mempunyai immunasi rendah; virus senang dijangkiti individu. Penyakit ini 

dijangkiti disebabkan oleh bakteria yang terdapat di dalam makrofaj paru-paru 

diaktifkan apabila sistem imun individu menjadi lemah . Bakteria boleh hidup untuk 

beberapa tahun dalam keadaan tidak aktif dalam granulomas paru-paru. 

Mycobacterium tuberculosis mempunyai dua jenis protein kejutan haba: Acr1 dan 

Acr2 . Seperti semua SHSPs , kedua-dua protein ini berkongsi domain 90 amino asid 

yang dikenali sebagai α - crystallin domain dan mempunyai sambungan dekat N- dan 

C- terminal. Protein α crystallin (SHSP )2 keluarga sentiasa terdapat di seluruh alam 

dan menjalankan peranan perlindungan sel umum dalam mencegah pengumpulan 

protein denatured dan memudahkan refolding berikutnya oleh chaperones lain. Bagi 

perspektif Mycobacterium tuberculosis, fungsi ini memainkan peranan penting; yang 

mesti berupaya untuk terus hidup dalam persekitaran yang ganas manakala 

diasingkan dalam phagosomes makrofaj alveolar. Kajian ini sebenarnya dijalankan 

untuk melumpuhkan interaksi protein dengan muka vakum air. Satu penunjuk 

tentang kemungkinan immobilization protein di permukaan akan dilakukan melalui 

pengubahan bentuk protein. Simulasi molekul dinamik (MD) telah dijalankan untuk 

mengkaji bentuk terjerap daripada α crystallin di muka vakum air. Kajian awal 

menunjukkan bahawa terdapat beberapa perubahan bagi pembentukan protein dalam 

fasa air manakala protein itu tidak terjerap pada permukaan orientasi yang tertentu. 

Oleh itu, tidak terdapat sebarang perubahan ketara bagi permukaan α crystalline 

protein dilakukan.. 
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CHAPTER 1 

1 INTRODUCTION 

 Background of Information 

In exploring many particles structures system at atomic level study, 

Molecular dynamics (MD) technique is of great interest because of the cheap 

availability of computational power. Prediction properties of useful materials can be 

utilized by modeling of these systems such as biopolymers, nano materials, 

biological composites and so on (Todorova, 2009). 

In order to study the interactions of hard atomic spheres of liquids, at first, 

Alder and Wainwright in the late 1950's introduced the molecular dynamics method. 

Thorough their study, many important concepts of simple liquids were put into 

consideration. In 1974, more realistic simulation of water has been carried out by 

Stillinger and Rahman. The actual protein simulation’s beginning bovine pancreatic 

trypsin inhibitor (BPTI) was started since 1977. The whole virus (STMV) has been 

simulated by MD method (106 atoms, 50 ns) as (Wei and  Latour, 2009) have stated. 

Molecular modeling of proteins with models made of hard wood originally (1 

inch per Å) and plastic (0.5 inch per Å) was initiated by Corey and Pauling, (1953). 



2 

 

Moreover, the plastic models were connected with snap fasteners and the wood 

models with steel rods and clamps. X-ray diffraction (XRD) is the source where this 

model and structural data was obtained from and used correct atom proportions 

based on their van der Waals radii. Koltun who improved the original Corey-Pauling 

model, resulting in the Corey-Pauling-Koltun (CPK) model has proven to be very 

useful in visualizing and making accurate measurements of protein structure 

(Todorova, 2009). 

Molecular dynamics simulation (MD) computer series of atomic coordinates 

as a function of time. Hence, the details of protein conformational fluctuations its 

changes can be accessed through MD simulation. It is an efficient method to study of 

the construction, dynamics and thermodynamics of proteins and their complexes 

even, also refinement of X-ray crystallography and NMR structure from experiment 

(Salsbury, 2010). 

Protein in various fields such as medicine, disease detection and etc., it can be 

known as one of the most important classes of biomolecules. As the surface induced 

denaturation, preservation of the functions in application settings is very challenging   

and in addition of it, proteins are expected have biological functions. Furthermore, 

bio nanotechnology is the concept which has been concentrated by particular protein 

adsorption on the surfaces extent. An experiments series to study the adsorption 

behavior of genetically engineered peptides have been done (GEP) by Sarikaya et al., 

(2006) and Serizawa et al., (2007) from phage display on various material substrates. 

A unique fingerprint of interaction with different material surfaces can be 

illustrated by different sequences of the 20 primary amino acids based on these 

studies (White et al., 2005). In order to study the partition free energy of unfolded 

polypeptides at cell membrane interfaces in 2005 they have used pent peptides 

models from which they developed an algorithm which was based on experiment to 

predict proteins that partition into the lipid bilayer interface, the binding free energy 

and secondary structure of peptides. 
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In order to calculate the virtual free energy transfer of unfolding chains into 

the interface, the partitioning free energy was created, due to problems of 

hydrophobicity thermodynamics and existing inaccessible unfolded proteins through 

interface of cellular membrane. Last but not least, in order to provide insight into the 

processes that influence cellular function, these studies have been utilized 

accordingly (Wei and Latour, 2009). 

The actual cause of more than 1.5 million deaths per year would be M. 

tuberculosis which is the notorious species of this genus and a facultative 

intracellular pathogen that persists within immune phagocytes. The hydrophobic 

mycobacterial cell, roughly around two billion people have been infected with 

tuberculosis (TB) which constitutes one out of three of the world’s population which 

two millions of those pass away each year (Organization, 2013). This disaster has 

also been known as the seventh most common cause of mortality in the world 

(Alday, 2010). This disease would not be transmittable through surface contact, but 

by the contaminated air. Different part of body such as lung, spine, kidney and brain 

can be attacked by M. tuberculosis. Moreover, it would have some symptoms 

including a long-lasting cough, which can produce blood or phlegm, fever, fatigue, 

weight loss, and chest or breathing pain (Organization, 2013). Coughs, sneezes or 

speaks are the ways that air can be contaminated by the infected person (Cramer et 

al., 2006). Host defenses can be rescued by Tuberculosis and remain undetected 

within the body for decades, plus most people infected with TB are symptom-free. It 

would be very difficult to control the disease within in a population, as this 

symptom-free nature of the disease exists. It goes without saying that, as for the 

undetected patients, treatments would be challenging. Roughly twenty drugs are 

available for TB treatment which would be utilized differently in various 

combinations and situations. For instance, as for the treatment of new patients, there 

is no suggestion of any drug resistance while, others are only used for the treatment 

of drug resistant patients (Todar and Kanabus, 2012). Mostly, various combinations 

of antibiotic on the basis of assumption would be needed and used for infected 

patients, as it is so hard to detect the bacteria. Consequently, the resistance of 

bacteria may occur to those antibiotics in the patients. 
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Through inhaling minute aerosol droplets carrying a small number of 

bacteria, humans may become infected with the bacteria. The lung mycobacterial 

bacilli are phagocytized by alveolar macro phases at the site of infection. In order to 

combat microbial intruders and to entirely eliminate them, these macrophages are 

executed promptly. Nevertheless, escaping of mycobacteria eradication by 

macrophages and survive within these cells might happen as well. Within 

macrophages the bacteria would replicate themselves instead, inducing the release of 

pro-inflammatory cytokines, which would be leading to formation of granulomas, 

tissue destruction, liquefaction and cavity formation. 

By employing multiple receptors, like mannose receptors, the unique 

composition of the mycobacterial cell wall and envelope mostly enables the tubercle 

bacillus to enter macro phases (Gengenbacher and  Kaufmann, 2012). Bacterium 

would need to survive in these two different environments as, phagocytic 

compartment of macrophages and the potentially hypoxic environment of 

granulomas during this lifelong infection (Stewart et al., 2006). The bacteria would 

have the possibility to persist in human tissues for long periods in a clinically latent 

or dormant state if it could survive under these environments. Persist in human 

tissues for long periods in a clinically latent or dormant state. 

 Problem Statement  

Around two billion people across the world have suffered the Infections with 

tuberculosis bacteria (TB). This would indicate that around one out of three 

population of world have been infected as indicated by World Health Organization 

(WHO) in its statistical figure (world health organization website, 2012). As an air 

bone disease TB is a transmittable disease that would be not transmitted through the 

surface contact but in contaminated air. Different part of body as lung, spine, kidney 

and brain can be attacked by M. tuberculosis. Blood, phlegm, fever, fatigue, weight 

loss, and chest or breathing pain can be produced by symptoms include a long-lasting 
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cough. People can get infected by contamination Air through different ways such as, 

coughs, sneezes and speaking (Cramer et al., 2006). 

It would be very much difficult to control and cure the disease due to the 

ability of the pathogen (Mycobacterium tuberculosis) to evade host defense system 

and remains undetected for decades in the host cell (symptoms free). As for TB 

treatment, there are around twenty drugs available which would be used in different 

combination and situation/circumstances. As an instance, there is no suggestion of 

any drug resistance in the treatment of new patients while, others are only used for 

the treatment of drug resistant patients (Todar, 2012). Various combinations of 

antibiotic would be utilized to cure the infected patients on the basis of assumption as 

the bacteria are very much hard to be detected. At last, in the patient’s body, the 

bacteria may become resistant to the antibiotics. Lack of better detection way is seen 

as the antibiotics interference, difficulty along treatment, drugs resistance and rapid 

spreading of the disease (Gahoi et al., 2013). In order to control and cure the disease, 

it would be a considerable challenge to devise an easy, cheap, and fast method for 

detection. An inhospitable environment would have the possibility to survive by 

getting hand of α crystallin as a major secretory protein of the Mycobacterium 

tuberculosis while sequestered within phagosomes of alveolar macrophages 

(Kennaway et al., 2005). Therefore, as for disease detection perspective, it can be an 

appropriate candidate. I have utilized alpha crystallin in bulk phase and water 

vacuum interface to show the interaction and change conformational of alpha 

crystallin for devising method. 

 Objectives of the Research 

Understanding the mode of interaction of α crystallin protein with a water-

vacuum interface is the actual aim of this project along with exploring the 

possibilities of using α crystallin in devising tuberculosis detection method. The 

objectives tended to be accomplished are as follows:  
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1) To construct the water model and water-vacuum interface  

2) To run molecular dynamics simulations  

3) To calculate physical propertied of adsorpted protein from simulation data 

 Scope of the Study 

This would go without saying that this study is computational specifically in 

nature, plus the computational facilities of the faculty of biosciences and medical 

engineering (FBME) was utilized to perform the simulation.  

A single monomer of α-crystallin will be used in the simulation along with 

consideration of the computational expenses and facilities available. Besides, in the 

current study, Standard molecular dynamics was used as well. The software 

GROMACS will be utilized to execute the molecular dynamics simulations. Gromos 

96 force field parameters would provide the potential energy for the simulations. 

Root means square deviation (RMSD) radius of gyration and root means square 

fluctuations (RMSF) is the criteria and measurement of the extent of conformational 

changes. The final results would be assessed and discussed according to these 

measurements and 3D of the conformations.  

 Significance of the Study 

Discovering new drugs for TB along with many different strategies are being 

followed worldwide. Attacking the unique cell wall composition of Tuberculosis is 

the major concentration point (Gahoi et al., 2013). Protein can be considered as a 

very good candidate for disease detection and drug target as α crystallin is straightly 

connected to the survival mechanism of the bacteria. 
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There would be a great importance in the protein α crystallin water-vacuum 

interaction, adsorption happening experiments and modeling. The significances of 

this study would be provided through the measurement, prediction and understanding 

the protein conformation, interface interaction, shift structures and kinetic details of 

protein-interface. Furthermore, in all living cells, the major and actual structures are 

proteins. The progress and finding out the macromolecules well would be helped 

through deliberation of interaction proteins with interface. Moreover, surmount 

ability on limitation of experimental would be provided through working molecular 

dynamic simulation method.  
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