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ABSTRAK 

 

 

 

 

Rangkaian neural telah mendapat perhatian dalam teori unjuran. 

Walaubagaimanapun, pemilihan pelbagai parameter untuk membina model unjuran 

rangkaian neural bermakna proses merekanya masih melibatkan kaedah cuba jaya. 

Objektif kajian ini ialah untuk menyiasat kesan pengaplikasian pelbagai nilai nod 

input, fungsi-fungsi penggiatan dan teknik-teknik transformasi data ke atas 

pelaksanaan unjuran siri masa pungutan hasil oleh rangkaian neural rambatan balik. 

Dalam kajian ini, beberapa teknik transformasi data telah digunakan untuk 

mengeluarkan komponen tidak pegun di dalam siri masa data, dan kesannya ke atas 

proses pembelajaran dan menghasilkan unjuran menggunakan model rangkaian 

neural dianalisa. Kaedah cuba jaya digunakan di dalam kajian ini untuk mendapatkan 

jumlah nod input yang sesuai begitu juga dengan jumlah nod terselindungnya yang 

ditentukan melalui teorem Kolmogorov. Kajian ini juga menumpukan kepada 

perbandingan penggunaan fungsi logaritma dan model rangkaian neural cadangan 

yang menggabungkan fungsi sigmoid di nod lapisan terselindung dan fungsi 

logaritma di lapisan nod output, dengan fungsi sigmoid sebagai fungsi penggiatan 

pada nod-nod tersebut. Kaedah eksperimen validasi-silang digunakan dalam kajian 

ini untuk meningkatkan keupayaan pengitlakan rangkaian neural. Hasil kajian ini 

menunjukkan bahawa model rangkaian neural yang mempunyai jumlah nod input 

yang kecil sejajar dengan saiz struktur rangkaiannya yang kecil berjaya menjana 

unjuran yang baik walaupun ia sengsara daripada penumpuan yang lambat. Fungsi 

penggiatan sigmoid mengurangkan kekompleksan rangkaian neural serta menjanakan 

penumpuan terpantas dan keupayaan unjuran yang baik di dalam hampir keseluruhan 

eksperimen. Kajian ini juga menunjukkan prestasi unjuran daripada rangkaian neural 

dapat ditingkatkan dengan mengunakan teknik transformasi data yang sesuai.  
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ABSTRACT 

 

 

 

 

 Artificial neural networks (ANN) have found increasing consideration in 

forecasting theory. However, the large numbers of parameters that must be selected 

to develop ANN forecasting model have meant that the design process still involves 

much trial and error. The objective of this study is to investigate the effect of 

applying different number of input nodes, activation functions and pre-processing 

techniques on the performance of backpropagation (BP) network in time series 

revenue forecasting. In this study, several pre-processing techniques are presented to 

remove the non-stationary in the time series and their effect on ANN model learning 

and forecast performance are analyzed. Trial and error approach is used to find the 

sufficient number of input nodes as well as their corresponding number of hidden 

nodes which obtain using Kolmogorov theorem. This study compares the used of 

logarithmic function and new proposed ANN model which combines sigmoid 

function in hidden layer and logarithmic function in output layer, with the standard 

sigmoid function as the activation function in the nodes. A cross-validation 

experiment is employed to improve the generalization ability of ANN model. From 

the empirical findings, it shows that an ANN model which consists of small number 

of input nodes and smaller corresponding network structure produces accurate 

forecast result although it suffers from slow convergence. Sigmoid activation 

function decreases the complexity of ANN and generates fastest convergence and 

good forecast ability in most cases in this study. This study also shows that the 

forecasting performance of ANN model can considerably improve by selecting an 

appropriate pre-processing technique. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction 

 

 

 Knowing future better has attracted many people for thousands of years. The 

forecasting methods vary greatly and will depend on the data availability, the quality 

of models available, and the kinds of assumptions made, amongst other things.  

Generally speaking, forecasting is not an easy task and therefore it has attracted 

many researchers to explore it. 

 

 

 Artificial neural network (ANN) has found increasing consideration in 

forecasting theory, leading to successful applications in various forecasting domains 

including economic (Yao, 2002), business (Crone et al., 2004), financial (Lam, 2004), 

and many more. ANN can learn from examples (pass data), recognize a hidden 

pattern in historical observations and use them to forecast future values.  In addition 

to that, they are able to deal with incomplete information or noisy data and can be 

very effective especially in situations where it is not possible to define the rules or 

steps that lead to the solution of a problem. 
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 Despite of many satisfactory characteristics (Zhang et al, 1998), of ANNs, 

building an ANN model for a particular forecasting problem is a nontrivial task. 

Several authors such as Bacha and Meyer (1992), Tan and Witting (1993), Kaastra 

and Boyd (1996), Zhang et al. (1998), Plummer (2000), Xu and Chen (2001), Lam 

(2004) have provided an insight on issues in developing ANN model for forecasting.  

These modeling issues must be considered carefully because it may affect the 

performance of ANNs.  Based on their studies, some of the discussed modeling 

issues in constructing ANN forecasting model are the selection of network 

architecture, learning parameters and data pre-processing techniques applies to the 

time series data.  

 

 

 Thus, this study uses a BP network to forecast future revenue collection for 

Royal Malaysian Customs Department.  This study examines the effect of network 

parameters through trial and error approach by varying network structures based on 

the number of input nodes, activation functions and data pre-processing in designing 

of BP network forecasting model. 

 

 

 

 

1.2 Problem Background 

 

 

 ANNs promise attractive feature to various forecasting domains: being a data 

driven learning machine as opposed to conventional model-based approaches, 

permitting universal approximation of arbitrary linear or non-linear functions, and 

therefore offering great flexibility in learning the generator of noisy data from 

examples and generalizing structure from it without priori assumptions (Zhang et al., 

1998). However, the nontrivial task of modeling ANNs for a particular prediction 

problem is still considered to be as much an art as a science (Zhang et al., 1998), as 

the combination of choices may significantly impact on the networks ability to 

extrapolate results. 
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Due to their flexibility, neural networks lack a systematic procedure for 

model building.  Therefore obtaining a reliable neural model involves selecting a 

large number of parameters experimentally through trial and error (Kaastra and Boyd, 

1996). The performance of ANNs in forecasting is influenced by ANN modeling, 

that is the selection of the most relevant network architecture and network design.  

Poor selection of parameter settings can lead to slow convergence and incorrect 

output (Kong and Martin, 1995).  One critical decision is to determine the 

appropriate network architecture, that is, the number of layers, the number of nodes 

in this layer, and the number of arcs which interconnect with the nodes.  The network 

design decision include the selection of activation function in the hidden and output 

neurons, the training algorithm, data transformation or normalization method, 

training and test set, and performance measures.  

 

 

 When applying an ANN model in a real application, attention should be taken 

in every single step.  The usage and training of ANN is an art.  One successful 

experiment says nothing for real application. Zhang (1992), Tan and Witting (1993), 

Kong and Martin (1995), had focused their studies on parametric effects on building 

a BP network for a particular forecasting problem.  Kaastra and Boyd, (1996), have 

provided a practical introductory guide in the design of ANN for forecasting 

financial and economic time series data.  The issues on modeling fully-connected 

feed-forward networks for forecasting had been discussed by Zhang et al. (1998). 

Maier and Dandy (2000), have review the modeling issues and outlined the steps that 

should be followed in developing ANN model for predicting and forecasting water 

resource variables.   

 

 

 When BP algorithm was introduced in 1986, there has been much 

development in the use of ANNs for forecasting by a number of researchers for 

examples Zhang (1992), Tan and Witting (1993), Yu and Chen (1993), Kong and 

Martin (1995), Yu (1999), Lopes et al. (2000), More and Deo (2003), Crone et al. 

(2004).  

 

 



 4

 BP network is characterized by its robustness, its ability to generalize, learn 

and to be trained (Kong and Martin, 1995).  Although this algorithm is widely used 

and recognized as a powerful tool for training feed-forward neural network, it suffers 

from slow convergence process, or long training time (Nguyen et al., 1999, Bilski, 

2000, Xu and Chen, 2001, Kamruzzaman and Aziz, 2002, Kodogiannis and 

Anagnostakis, 2002).  One of the identified reason of slow convergence is the used 

of sigmoid activation function in hidden and output layer of BP network (Bilski, 

2000, Kamruzzaman and Aziz, 2002). A number of researches have been done in 

order to improve the convergence rate of BP learning.  Therefore, several approaches 

have been developed in order to speed up the convergence.  

 

 

Fnaiech et al. (2002) have summarized the approaches for increasing the BP 

convergence speed onto seven cases: the weight updating procedure, the choice of 

optimization criterion, the use of adaptive parameters, estimation of optimal initial 

conditions, reducing the size of problem, estimation of optimal ANN structure and 

application of more advanced algorithms.  According to Kamruzzaman and Aziz 

(2002), approaches to accelerate BP learning include, selection of better cost function, 

dynamics variation of learning rate and momentum and selection of better activation 

function of the neurons. Bilski (2000); Kamruzzaman and Aziz (2002), have 

proposed new activation functions in order to accelerate BP learning process.  

 

 

Several other approaches also have been implemented in forecasting problem.  

For example, Xu and Chen (2001), have employed the fast convergence algorithm 

the quasi-Newton method to expedite the training process in short-term load 

forecasting problem.  Another work by Kodogiannis and Anagnostakis (2002), have 

adopted the adaptive learning rate BP network, which relates the learning rate with 

the total error function in order to accelerate the convergence speed of standard BP in 

short-term load forecasting.  

 

 

This research attempts to design an ANN model for revenue time series 

forecasting. A BP network forecasting model is constructed to test its forecasting 
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capability by implementing modification on several network parameters. The 

modeling issues discussed in this study are focused on network paradigms 

(specifically to determine sufficient number of input node and activation function) 

and data pre-processing. The learning ability and forecast result produce by ANN 

models are evaluated and examined.  

 

 

 

 

1.3 Problem Statement 

 

 

The problem statement of this study is as follow:  

 

How the selection of these parameters in network modeling namely: number of input 

nodes, activation functions and data pre-processing techniques may affect the 

forecasting capability of ANN in time series revenue forecasting? 

 

 

 

 

1.4 Study Aims 

 

 

 This study aims to provide a step by step methodology for designing ANN for 

revenue time series forecasting. This research also attempts to explore:  

a) the effectiveness of data pre-processing technique on ANN modeling and 

forecasting performance. 

b) the generalization capability of the ANN by varying the network structure. 
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1.5 Objectives  

 

 

1. To design and develop ANN model which combines sigmoid activation 

function in hidden layer and logarithmic activation function in output layer.  

 

2. This research attempts to understand the network parameters by varying them 

and observing their effect on the network. Specifically, the parametric effect 

of varying the: 

• data pre-processing technique 

• number of nodes in the input layer of ANN model 

• activation function in hidden and output layers of ANN model 

are monitored in an attempt to develop an understanding of their effect on 

building a revenue forecasting model.  

 

 

 

 

1.6 Scopes of Study 

 

 

The scopes of this study are as follow: 

 

1. Real time series data of monthly revenue collection obtained from Royal 

Malaysian Customs Department in Putrajaya from January 1990 to December 

2004 are used as input to the ANN model. 

 

2. The MLP network with three layers (one hidden layer, an input and an output 

layer) are used. 

 

3. Trial and error design procedures are employed to arrive at an acceptable 

structure and parameter namely: data pre-processing technique, number of 

input node and activation function of ANN model. 
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4. Different data pre-processing techniques are presented to deal with 

irregularity components exist in time series data and their properties are 

evaluated by performing one step-ahead revenue forecasting using neural 

network.  

 

5. The network input nodes are varied from 1 to 11 nodes to see its effect onto 

the network while the number of hidden node is obtained by using 

Kolmogorov theorem. 

 

6. The output of the network is the forecast of one-step-ahead revenue collection. 

 

7. Activation functions used for observation and combination are the sigmoid 

function and the logarithmic function. 

 

8. Economic and other outside factors are not considered and included in the 

estimation. 

  

9. Standard BP program is developed in Windows environment using Microsoft 

Visual C++ 6.0. 

 

 

 

 

1.7 Significance of the Study 

 

 

 The study examines the effectiveness of BP network model as an alternative 

tool for forecasting. This study provides a practical introductory guide in the design 

of an ANN for forecasting time series data. We use the time series corresponding to 

the revenue collection in Royal Malaysian Customs Department to illustrate this 

process. This research attempts to study the behavior of ANN models when several 

of its parameters are altered. The relevancy of applying difference non-linear 

activation functions in hidden and output layers of ANN model is also examined in 

this study.  
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1.8 Organization of the Report 

 

 

 This report consists of five chapters. Chapter 1 presents the introduction of 

the study. Chapter 2 presents an appropriate literature and review on forecasting, 

ANN in time series forecasting, traditional time series forecasting, performance 

comparison between ANN and traditional time series forecasting technique from the 

past researched, explanation of ANN concept including network structure, BP 

algorithm and the affect of activation functions to BP learning. Chapter 3 discusses 

on the methodology used in this study. Chapter 4 provides experimental results and 

analysis of the obtained results. Chapter 5 draws the conclusion and suggestions for 

future work. 
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