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ABSTRACT 

 

 

 

 

Fuzzy Topographic Topological Mapping (short FTTM), is a method that was 

successfully developed to solve the neuromagnetic inverse problem. The method has 

been developed successfully by using some of algebraic and topological structures. 

Furthermore, FTTM was evolved as Lie groups for its components, where all 

components of FTTM 1 and FTTM 2 were shown as 2- dimensional Lie group.The 

main purpose of this study is to develop the First Isomorphism Theorem of Lie 

Group for FTTM and also interpret the physical meaning of the First Isomorphism 

Theorem of Lie Group for Fuzzy Topographic Topological Mapping. 
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ABSTRAK 

 

 

 

 

Pemetaan Topologi Topografi Kabur (FTTM)merupakan suatu kaedah yang 

telah berjaya dibangunkan bagi menyelesaikan masalah songsang neuromagnetik 

menggunakan beberapa struktur aljabar dan topologi. Tambahan lagi, FTTM telah 

berkembang sebagai kumpulan Lie bagi komponennya, di mana semua komponen 

FTTM 1 dan FTTM 2 telah ditunjukkan sebagai kumpulan Lie dua dimensi. Tujuan 

utama kajian ini ialah untuk membangunkan Teorem Isomorfisma Pertama 

Kumpulan Lie untuk FTTM dan juga untuk mentafsirkan maksud fizikal bagi 

Teorem Isomorfisma Pertama Kumpulan Lie untuk Pemetaan Topologi Topografi 

Kabur. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background and Motivation 

 

 

 Isomorphism theorems are theorems that describe the relationship between 

quotient, homomorphism and sub objects.  Versions of the theorem exist for group, ring, 

vector space, module, lie algebra and various algebraic structures. 

 

 

 In this chapter we are going to introduce some of the concepts that are related to 

isomorphism theorem which are group, quotient group, homomorphism, kernel of group 

and finally Lie group. 

 

 

 

 

1.1.1 Group 

 

 

 The term group was used by Galois around 1830 to describe sets of one-to-one 

functions on finite sets that could be grouped together to form a closed set.  As is the 

case with most fundamental concepts in mathematics, the modern definition of a group 

that follows is the result of a long evolutionary process.  Although this definition was 

given by both Heinrich Weber and Walter Von Dyck in 1982, it did not gain universal 

acceptance until the twentieth century. 
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 In other words, a group is a set together with an associative operation such that 

there is an identity, every element has an inverse, and any pair of elements can be 

combined without going outside the set [2]. 

 

 

Definition 1.1 [2]  

Let G be a group and H a normal subgroup of G. A quotient group is the set G/H ={aH| 

a  G } such that (aH)(bH) = abH. 

 

 

The resulting quotient is written G/H where G is the original group and H is the 

normal subgroup of G. 

 

 

Example 1.1 

Let G = 8 and let H= <2> = {0, 2, 4, 6}, Then 

G/H= {0+H, 1+H} 

 

 

 

 

1.1.2 Homomorphism Group [4].  

 

 

Let G be a group with respect to  and let H be a group with respect to . A 

homomorphism from G to H is a mapping  : G        H such that (x y) = (x)  

(y),  x, y in G , therefore, G is homeomorphic to H. 

 

 

 

 

1.1.3 Types of Homomorphisms 

 

 

 There are different kinds of homomorphisms and some special homomorphisms 

have special names 
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 If the homomorphism : G  H is injective, we say that it is a monomorphism, 

and if  is surjective we call it an epimorphism.  When it is both injective and surjective 

(that is bijective) it is called an isomorphism. 

 

 

 In the later case we also say that G and H are isomorphic, meaning they are 

basically the same group (have the same structure).  A homomorphism from G to itself 

is called an endomorphism, and if it is bijective then it is called an automorphism [7]. 

 

 

Definition 1.3 [4]  

Let  be a homomorphism from the group G to the group H.  The Kernel of  is the set 

Ker  = {x  G| (x) = e
-
}, where e

-
 denotes the identity element in H. 

 

 

 

 

1.1.4 Group Isomorphism 

 

 

Two groups G and H are called isomorphic if there is a bijection map  : G      H 

such that  x, y in G,  (xy) =  (x)   (y ) .  If there exists an isomorphism between 

groups, they are termed isomorphic groups [2]. 

 

 

 

 

1.1.5 The First Isomorphism Theorem 

 

 

 The first isomorphism theorem states that the image of any group G under a 

homomorphism is always isomorphic to a quotient of G, specially, the image of G under 

a homomorphism  :  is isomorphic to G/Ker(  where ker(  denotes the 

kernel of [14].  Formally, it is given in the following theorem. 
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Theorem 1.1 [4] (First Isomorphism Theorem) 

 If  is an epimorphism from the group G to the group H.  Then H is isomorphic 

to G/Ker(  ). 

G/Ker (  . 

The following diagram illustrates the meaning of first isomorphism theorem. 

 
 

                                G                                  H 

 

 

 

 

                     G/Ker (  

 

 

1.1.6 Lie Group 

 

 

 Only a century has elapsed since 1873, when Sophus Lie began his research on 

what has evolved into one of the most fruitful branches of modern mathematics- the 

theory of Lie groups.  Few years later lie groups have come to play an increasingly 

important role in modern physical theories where it enter physics through their finite- 

and infinite- dimensional matrix representations. 

 

 

Lie group is situated at the intersection of two basic areas of mathematics: 

algebra and geometry.  A Lie group is a group. It is also a differentiable (smooth) 

manifold.  Finally, the two structures, algebraic and the geometric structures, have to be 

compatible with each other in a precise manner. 

 

 

A Lie group is a group of symmetries where these symmetries are continuous. 

For example, a circle has a continuous group of symmetries where we can rotate the 

circle randomly [5]. 
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1.2 Influential Observation 

 

 

 Fuzzy Topographic Topological Mapping (FTTM) is a novel method for solving 

neuromagnetic inverse problem to determine the current source. i.e. epileptic foci.  The 

recorded magnetic fields help in determining where electrical currents originate and the 

strength of currents.  Currently, there are two versions of FTTM namely FTTM 1 and 

FTTM 2. FTTM Version 1 is designed to present a 3-D view of an unbounded single 

current source in one angle observation (upper of a head model).  It consists of three 

algorithms, which link between four components of the model as shown in Figure 1.1. 

 

 

 The four components are Magnetic Contour Plane (MC), Base Magnetic 

Plane(BM), Fuzzy Magnetic Field (FM) and Topographic Magnetic Field (TM) (Figure 

1.1).  MC is actually a magnetic field on a plane above a current source with z=0.  The 

plane is lowered down to BM, which is a plane of the current source with z= -h. then the 

entire BM is fuzzified into a fuzzy environment (FM), where all the magnetic field 

reading are fuzzified.  Finally, a three dimensional presentation of FM is plotted on BM. 

The final process is defuzzification of the fuzzified data obtain a 3-D view of the current 

source (TM). 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: FTTM Version 1 

 Magnetic Contour Plane (MC) 

 

Fuzzy Magnetic Field (FM) 

Topographic Magnetic Field 

(TM) 

Magnetic Contour Plane (MC) 

Base Magnetic Plane (BM) 

Algorithm 1 

Algorithm 2 
Algorithm 3 
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 FTTM Version 2 has been developed to present 3-D view of a bounded multi 

current source [12] in 4 angles of observation (upper, left, right and back of a head 

model).  It consists of three algorithms, which link between four components of the 

model.  The four components are Magnetic Image Plane (MI), Base Magnetic Image 

Plane (BMI), Fuzzy Magnetic Image Field (FMI) and Topographic Magnetic Image 

Field (TMI) (Figure 1.2).  

 
 
  

 

 

 

 

 

 

 
 

Figure 1.2: FTTM Version 2 

 

 

 MI is a plane above a current source with z=0 containing all grey scale reading 

(0DN-255DN) of magnetic field.  The plane is lowered down to BMI, which is a plane 

of the current source with z= -h.  Then the entire base BMI is fuzzified into fuzzy 

environment (FMI), where all the gray scale reading are fuzzified.  Finally, a three 

dimensional presentation of FMI is plotted on BMI.  The final process is defuzzification 

of the fuzzified data to obtain a 3-D view of the current source (TMI). 

 

 

 FTTM Version 1 as well as FTTM Version 2 is specially designed to have 

equivalent topological structure between its components.  In other words, a 

homomorphism between each component of FTTM Version 1 as well as FTTM Version 

2 exists.  The homeomorphism between a unit sphere (denoted by S
2
) and an ellipsoid 

with |x|  1, |y| 1 and |z|  2 (denoted by E
2
) is existed [10]. ( see Figure 1.3 ). 

Magnetic Image Plane    

(M ) 

Base magnetic Image 

Plane (BM ) 

Topographic Magnetic 

Image Field (TM ) 

Fuzzy Magnetic Image 

Field (FM ) 

Algorithm 1 Algorithm 3 

Algorithm 2 
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Figure 1.3: Homeomorphism from S
2
 to E

2 

 

 

 Magnetic field reading generated by MATLAB programming and FTTM 

Version 1, was used to solve neuromagnetic inverse problem of MEG for an unbounded 

single current source.  An algorithm was written to determine location, the direction and 

magnitude of an unbounded single current source [6].  Furthermore, magnetic field 

readings generated by MATLAB programming and FTTM Version 2, was also used to 

solve neuromagnetic inverse problem for a bounded multi current sources.  In addition, 

Fuzzy C-means is applied to identify the number of current sources by simulation and 

experimental [6]. 

 

 

 

 

1.3 Problem Statement 

 

 

 The main aim of this research is to prove The First Isomorphism Theorem of Lie 

group for Fuzzy Topographic Topological Mapping Version 1 and The First 

Isomorphism Theorem of Lie Group for Fuzzy Topographic Topological Mapping 

Version 2. 

 

    

 

                            

                           

 

                                      
 

  

 

S2 E2 
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1.4 Objectives of Research 

 

 

 The objectives of this research are given as follows: 

(i) To prove The First Isomorphism Theorem of Lie Group of Fuzzy Topographic 

Topological Mapping Version 1 (FTTM 1). 

(ii) To prove The First Isomorphism Theorem of Lie Group of Fuzzy Topographic 

Topological Mapping Version 2 (FTTM 2). 

(iii) To interpret the physical meaning of the developed these theorems. 

 

 

 

 

1.5 Scope of Research 

 

 

 The scope of this research will be on the First Isomorphism Theorem, Lie group 

and Fuzzy Topographic Topological Mapping (FTTM) Version 1 as well as FTTM 

Version 2. 

 

 

 

 

1.6 Significance of Research 

 

 

 The main purpose of this research is to develop the First Isomorphism Theorem 

of Fuzzy Topographic Topological Mapping FTTM whereby we can have  

MC  MC/ Ker , where  is a function in bm, fm and tm. 
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1.7 Dissertation’s Layout 

 

 

 This dissertation contains five chapters which are divided as follows: 

 Chapter 1 deals with the introduction to the research. It discusses the background 

and motivation, influential motivation, problem statement, objectives and finally, scope 

of the research.  Then, Chapter 2 presents the literature review of the research. It 

discusses FTTM of two different forms FTTM 1 and FTTM 2, Lie group of FTTM. It is 

then followed by Chapter 3, which presents the proof of the First Isomorphism Theorem 

of Lie group for FTTM 1 and FTTM 2. The physical interpretation of these theorems 

will be in Chapter 4. Some conclusions and recommendations will be presented base on 

the results in Chapter 5.  
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