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ABSTRACT 

 

 

 

 

Successful river flow time series forecasting is a primary goal and an 

essential procedure required in the planning and water resources management. River 

flow data are important for engineers to design, build and operate various water 

projects and development.  The monthly river flow data taken from Department of 

Irrigation and Drainage, Malaysia are used in this study. This study aims to develop 

a suitable model for short-term forecasting of monthly river flow in three catchment 

areas in Malaysia. The hybrid model based on a combination of two methods of Self 

Organizing Map (SOM) and Least Square Support Vector Machine (LSSVM) model 

referred as SOM-LSSVM model is introduced. The hybrid model using the “divide 

and conquer” approach where SOM algorithm is used to cluster the data into several 

disjointed clusters. Next, the LSSVM model is used to forecast the river flow for 

each cluster. This study also provides a method for determining the input structure 

that will be used by Artificial Neural Network (ANN), LSSVM and hybrid SOM-

LSSVM models. There are three techniques used to determine the number of input 

structures. The first technique is based on the past trend river flow data, the second 

technique is based on the stepwise regression analysis and the third technique is the 

best Autoregressive Integrated Moving Average (ARIMA) model. The experiments 

present a comparison between a hybrid model and a single model of ARIMA, ANN, 

and LSSVM. The comparison to determine the best of the model is based on three 

types of statistical measures of Mean Absolute Error (MAE), Root Mean Square 

Error (RMSE) and Correlation Coefficient (r). The results have shown that the 

hybrid model shows better performance than other models for river flow forecasting. 

It also indicates that the proposed model can be predicted more accurately and 

provides a promising alternative technique in river flow forecasting. 
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ABSTRAK 

 

 

 

 

Peramalan siri masa aliran sungai yang tepat adalah matlamat utama dan 

merupakan prosedur penting yang diperlukan dalam merancang dan menguruskan 

sumber air. Data aliran sungai begitu penting kepada jurutera dalam merekabentuk, 

membina dan mengendalikan pelbagai projek-projek pembangunan berasaskan air. 

Data aliran sungai bulanan diambil dari Jabatan Pengairan dan Saliran, Malaysia 

digunakan dalam kajian ini. Tujuan kajian ini adalah membangunkan model yang 

bersesuaian untuk ramalan jangka pendek aliran sungai bulanan di tiga kawasan 

tadahan di Malaysia. Model hibrid berasaskan gabungan dua kaedah iaitu Self 

Organizing Map (SOM) dan Least Square Vector Machine (LSSVM) model dirujuk 

sebagai SOM-LSSVM model diperkenalkan. Model hibrid ini menggunakan 

pendekatan "pecah dan takluk" di mana algoritma SOM digunakan untuk 

mengelompokkan data ke dalam beberapa kelompok yang teratur. Seterusnya model 

LSSVM digunakan untuk meramal aliran sungai bagi setiap kelompok. Kajian ini 

juga menyediakan kaedah bagi menentukan struktur input yang akan digunakan oleh 

model Rangkaian Saraf Tiruan (ANN), LSSVM dan juga hibrid SOM-LSSVM. 

Terdapat tiga kaedah yang digunakan bagi menentukan struktur input. Teknik 

pertama adalah berdasarkan data aliran yang lepas, teknik kedua berdasarkan kaedah 

analisis regrasi dan teknik ketiga merupakan model Autoregressive Integrated 

Moving Average (ARIMA) yang terbaik. Eksperimen ini mengemukakan 

perbandingan antara model hibrid dan model-model seperti ARIMA, ANN, dan 

LSSVM. Perbandingan bagi menentukan model yang terbaik dibuat berdasarkan tiga 

jenis pengukuran statistik iaitu Ralat Mutlak Min (MAE), Ralat Punca Min Kuasa 

Dua (RMSE) dan Pekali Kolerasi (r). Keputusan menunjukkan bahawa model hibrid 

menunjukkan prestasi yang lebih baik berbanding model lain untuk ramalan aliran 

sungai. Ia juga menunjukkan bahawa model yang dicadangkan boleh menganggar 

dengan lebih tepat dan menyediakan teknik alternatif yang lebih baik dalam ramalan 

aliran sungai. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction 

 

 

Hydrology is a scientific study of the water, distribution and the effects on 

the earth‟s surface, in the soil as well as in the atmosphere.  The water is in various 

forms such as liquid, vapour and ice at various places all the time. Water on earth 

can be stored in several reservoirs such as the atmosphere, oceans, lakes, rivers, 

lands and etc.  Ocean is the largest reservoir that holds water, which is about 97% 

water from earth.  Due to the huge ocean surface, the water will evaporate in a large 

amount and then form clouds of vapour (Viessman et al., 1989).  The water that has 

been through the process of evaporation will be back in the form of rain, snow or 

hail in both land and sea.   

 

 

 Hydrological cycle referred as continuous movement of water on, above and 

below the earth surface. The changes and movements of water are link together with 

the hydrological cycle. The components of the hydrologic cycle including vapour 

and clouds in the atmosphere, but also include surface water such as seas, lakes and 

rivers and ground water.  A river is part of hydrological cycle; usually contain a 

freshwater, flowing toward oceans, lakes, or other rivers.  River may also be called 
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as stream, tributary and rill.  On the way down to the ocean, river may collect some 

water from rain, and from other streams/rivers.  

 

 

Hydrology data such as flows and rainfall are the basic information used in 

the design of the water resources system.  Knowledge about the characteristics and 

volume of river flow is very important, especially for predicting the future river flow 

in the monsoon season where the heavy rainfall may cause heavy river flow.  By 

knowing and analyzing statistical properties of hydrologic records and data like 

rainfall or river flow, hydrologists are able to estimate future hydrologic phenomena. 

The river flow can be measured by using several methods such as the velocity-area 

method, level to flow method, and others.  This information is very useful for the 

river flow forecasting.  Heavy river flow may cause some damage to the 

environment such as flooding.  Flood, also known as deluge, is a natural disaster that 

could diminish properties, infrastructures, animals, plants and even human lives. 

Flooding occurs when the volume of water exceeds the capacity of the catchment 

area.  

 

 

Floods are one of the natural disasters that occur not only in Malaysia, but 

also in other part of the world.  It is also the most costly natural hazard since its 

ability to destroy human properties and lives.  The basic cause of river flooding is 

the incidence of heavy rainfalls such as during monsoon season, and the resultant 

large concentration of runoff, which exceeds river capacity (Ministry of Natural 

Resources and Environment, Malaysia, June 2007).  Meanwhile, reduced river flow 

is likely to restrict the supply of water for domestic consumption, transportation, an 

industrial and hydroelectric power generation.  Therefore, the ability to forecast the 

future river flow will be beneficial in the field of water management and helps in the 

design of flood protection works in urban areas and for agricultural land. 

 

 

In hydrology, different types of models are used such as lumped conceptual 

models, physical-based model also known as knowledge-driven modelling; 

empirical models also known as data-driven modelling and so on. By using the 

http://en.wikipedia.org/wiki/Flood
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knowledge driven modelling, the other catchment variables such as catchment 

characteristics (size, shape, slope and storage characteristics of the catchment), 

geomorphologic characteristics of a catchment (topography, land use patterns, 

vegetation and soil types that affect the infiltration) must be considered because it is 

hypothesized that forecasts could be improved if catchment characteristic variables 

which affect the  flow were to be included (Jain & Kumar, 2007; Dibike & 

Solomatine, 2001).   

 

 

Although combining others variables may improve the prediction accuracy, 

for developing countries like Malaysia, the information is often either difficult to 

obtain or unavailable.  Moreover, the influence of these variables and many of their 

combinations in generating river flow is an extremely complex physical process, 

especially due to the data collection of multiple inputs and parameters, which vary in 

space and time and not clearly understood (Zhang & Govindaraju, 2000).   

 

 

In river flow forecasting, the data-driven modelling using previous river flow 

time series data become increasingly popular (Kisi, 2008; 2009; Wang et al., 2009). 

The data-driven modelling which is based on extracting and re-using the information 

without taking into an account any physical law that underlie.  Although, river flow 

forecasting models using historical river flow time series data may lacking in an 

ability to provide physical interpretation and insight into catchment processes, they 

are nevertheless able to provide relatively accurate flow forecasts and becoming 

increasingly popular due to their rapid development times and minimum information 

requirements.  

 

 

 

 

1.2 Background Study 

 

Time series analysis and forecasting is an active research area over the last 

few decades.  Various kinds of forecasting models have been developed and 
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researchers have relied on statistical techniques to predict time series data.  The 

accuracy of time series forecasting is fundamental to many decisions processes and 

hence the research for improving the effectiveness of forecasting models has never 

been stopped (Zhang, 2003).  The reason that forecasting is so important is that 

prediction of future events is a critical input into many types of planning and 

decision making.   

 

 

River flow forecasting is an active research area that have been studied. 

River flow forecasting is an important yet difficult task in the field of hydrology 

because predicting future events involve a decision-making process. The flow is 

critical to many activities such as designing flood protection works for urban areas 

and agricultural land, and assessing how much water may be extracted from a river 

for water supply or irrigation. Because the accuracy of river flow forecasting is very 

important, models that deal with meteorological, hydrologic, and geological 

variables should be improved so that controlling water and operating water 

structures effectively will be possible. The ability to predict future river flow will 

provide the right edge and assist the engineer in terms of flood control management, 

and provide some benefits in the areas of water supply management (Viessman & 

Lewis, 1996). In the past, conventional statistical methods were employed to forecast 

a time series data.  However, the time series data are often full of non-linearity and 

irregularity. 

 

 

The most popular and widely known statistical methods used for time series 

forecasting is an Autoregressive Integrated Moving Average (ARIMA) or also 

known as Box Jenkins model. The popularity of the ARIMA model is due to its 

statistical properties. Several studies shown that ARIMA can be trusted as a reliable 

method in time series forecasting and the ability of ARIMA to identify the 

relationship between different time series (Muhamad & Hassan, 2005; Modarres, 

2007; Shabri, 2001; Zhang, 2003). The ARIMA also received an attention in 

hydrology area. The extensive applications and reviews of ARIMA model proposed 

for modeling of water resources time series were reported (Huang et al., 2004; Wang 

et al., 2009). There are some researcher employed ARIMA for river flow forecasting 
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(Noakes et al., 1985; Muhamad & Hassan, 2005; Modarres, 2007). ARIMA model is 

only a class of linear model and thus it can only capture linear feature of data time 

series. However, most river flow time series of practical relevance are nonlinear and 

chaotic nature. 

 

 

Artificial Neural Network (ANN) model has become an alternative 

forecasting technique used to capture the problems that cannot be solved by using 

the ARIMA model (Dolling & Varas, 2003).  In the last decade, ANN are being used 

more frequently in the analysis of time series forecasting, pattern classification and 

pattern recognition capabilities (Sharda, 1994; Zou et al., 2007). The ANN also 

provides an alternative tool for forecasting and has shown their nonlinear modelling 

capability in data time series forecasting. The ANN is the most widely and 

comprehensive statistical methods used for time series forecasting including to 

model a complex hydrologic system and has been successfully employed in 

modelling a wide range of hydrologic process where there were some researchers 

employed ANN for a river flow forecasting (Kisi, 2004; Keskin & Taylan, 2009), 

and some of them used to compare ANNs with the other traditional statistical 

technique for river flow prediction (Muhamad & Hassan, 2005; Wang et al., 2009). 

 

 

The major advantage of ANN is the flexible nonlinear modelling capability. 

The majority of the studies showed that ANNs are able to outperform other 

traditional statistical techniques (Wu et al., 2008). However, the selection of an 

optimal network structure (layers and nodes) and training algorithms still remain a 

difficult issue in ANNs applications (Maier & Dandy, 2000). ARIMA model and 

ANN are often compared with mixed conclusions in terms of superiority in 

forecasting performance. Survey of the literature shows that both ARIMA and ANN 

models performed well in different cases (Zhang, 1999). Since the real world highly 

complex, there exits some linear and nonlinear patterns in the time series 

simultaneously. 
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Other than ANN, the Support Vector Machine (SVM) model which was first 

suggested by Vapnik (1995), has recently been used in a range of applications such 

as in data mining, classification, regression and time series forecasting (Tay & Cao, 

2001; Zhang, 2003).  Several studies showed that SVM is a powerful methodology 

and has become most wanted in studies due to ability to solve most nonlinear 

regression and time series problem.  SVM also become a new method to model in 

hydrology modelling such as stream flow forecasting (Asefa et al., 2006), flood 

stage forecasting (Yu et al., 2006), rainfall runoff modeling (Dibike & Solomatine, 

2001) and etc. However, the standard SVM is solved using complicated quadratic 

programming methods, which are often time consuming and has higher 

computational burden because of the required constrained optimization 

programming. 

 

 

Suykens et al. (2005) introduced a revolution of SVM called Least Square 

Support Vector Machine (LSSVM) to encounter the SVM quadratic programming 

problem.  The LSSVM encompasses similar advantages as SVM, but its additional 

advantage is that it requires solving a set of only linear equations, which are much 

easier and simpler computationally.  The method uses equality constraints instead of 

inequality constraints and adopts the least squares linear system as its loss function, 

which is computationally attractive.  LSSVM also has good convergence and high 

precision, hence this method is easier to use than quadratic programming solvers in 

SVM method.  The LSSVM has been used successfully employed in various areas of 

pattern recognition and regression problems (Hanbay, 2009; Kang et al., 2008).  In 

the water resource, the LSSVM method has received very little attention literature 

and only a few applications of LSSVM to modeling of environmental and ecological 

systems such as water quality prediction (Yunrong & Liangzhong, 2009).  

 

 

The Self Organizing Map (SOM) proposed by Kohonen (2001) is one 

category of ANN that was first used as an information processing tool in the fields of 

speech and image recognition.  The SOM has developed increasing interest in water 

resources application such as classification of satellite imagery data and rainfall 

estimation (Murao et al., 1993), rainfall-rounoff modeling (Hsu et al., 2002), 
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typhoon-rainfall forecasting (Lin & Wu, 2009), river flood forecasting (Chang et al., 

2007), water resource problems (Kalteh et al., 2008), and model evaluation (Herbst 

& Casper, 2008; Herbst et al., 2009b). SOM is an excellent method to cluster data 

according to their similarity. As for SOM, this technique can project high-

dimensional input space on a low dimensional topology so as to allow the number of 

clusters to be determined by inspection (Lin & Chen, 2006). Therefore, SOM 

pursues a goal that is conceptually different from that of clustering (Wu & Chow, 

2004). 

 

 

Improving the forecasting accuracy is a fundamental yet a difficult task 

facing decision-makers in many areas. Using hybrid models has become a common 

practice to improve the forecasting accuracy. There are several studies that show 

hybrid models can be an effective way to improving predictions achieved by either 

of the models used separately (Zhang, 2003; Jain & Kumar, 2007). In recent years, 

more hybrid models were proposed where the models are combinations of clustering 

techniques with other forecasting model, have successfully solved many predictions 

problems such as a hybrid of SOM with ANN (Pal et al., 2003), SOM with SVM 

(Cao, 2003; Huang & Tsai, 2009), and other models (Chang & Liao, 2006; Chang et 

al., 2007). 

 

 

 

 

1.3 Problem Statement 

 

 

The ARIMA and ANN have been shown as powerful tools for time series 

forecasting. The ARIMA can only capture the linear instead nonlinear data. 

However, the time series data full with nonlinearity. At the mean time, the ANN has 

shown their ability in capturing the linear as well as nonlinear data, and also 

provides a reliable forecasting result. There are some disadvantages of the ANN 

where the network structure is hard to determine and it is usually determined by 

using a trial-and-error approach (Kisi, 2004).  

http://www.springerlink.com/content/?Author=Pei-Chann+Chang
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Because of this matter, the forecasting result may be inaccurate or invalid. 

An incorrect or inaccurate prediction will cause such a huge loss and inconvenience 

to the management and to the end-user. The suitability of forecasting method 

depending on the type and amount of the available data.  The researcher believed by 

applying the hybrid model is an alternative way to solve the problem facing in 

forecasting area. There are many types of hybrid model that might be useful in 

forecasting, however the development of hybrid model have increase every day. In 

this study, the hybrid model of SOM-LSSVM is proposed to improve the accuracy 

of prediction for river flow forecasting. Therefore, the research question is stated as 

below: 

 

 

“How to design a hybrid model based on SOM clustering technique and LSSVM 

model that are capable to improve the prediction accuracy”. 

 

 

The other issue is considered in order to solve the problem:  

 

i. Will the LSSVM model fits the observation values of the monthly river 

flow? 

ii. Since the SOM-LSSVM is the most promising technique in forecasting, 

will the hybrid SOM-LSSVM outperformed others? 

 

 

The ARIMA, ANN, LSSVM and the hybrid model of SOM-LSSVM were 

tested and compare to each others, and to ensure the capability and applicability of 

these models in predicting the monthly river flow forecasting. To verify the 

application of this approach, three different rivers were selected as case studies 

which are Bernam River, Selangor River and Muda River. 
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1.4 Research Goal 

 

 

The goal of this research is to develop and propose a new hybrid model 

which combines the SOM with the LSSVM (SOM-LSSVM) for river flow 

forecasting. The proposed hybrid SOM-LSSVM is expected to be useful for river 

flow forecasting. 

 

 

 

 

1.5 Research Objectives  

 

 

The objectives of this research are: 

 

i. To explore the potential application of LSSVM model for river flow 

forecasting.  

ii. To propose a hybrid model for river flow forecasting by combining the SOM 

and LSSVM.  

iii. To evaluate the performance of the proposed hybrid model compared with 

the other benchmark individual models such as ANN, ARIMA and LSSVM.  

 

 

 

 

1.6 Research Scope  

 

 

The scopes of this research are: 

 

i. This research focused on proposing a new method for river flow forecasting 

using a hybrid model. The proposing model is a hybrid of SOM-LSSVM. 

ii. Several map sizes of SOM are utilized using trail and error approach.  



10 

 

iii. The monthly river flow from three different rivers were selected as case 

studies. The data were obtained from Department of Irrigation and Drainage, 

Ministry of Natural Resources and Environment, Malaysia.  

iv. Several evaluation measures used to verify the best models which are Root 

Mean Square Error (RMSE), Mean Absolute Error (MAE) and Correlation 

Coefficient (r). The model with smallest MAE, RMSE and largest r values 

are considered as the best model.  

 

 

 

 

1.7 Significance of The Study 

 

 

This research is expected to contribute towards the hydrological field in term 

of river flow forecasting.  From this study the LSSVM and hybrid SOM-LSSVM 

models is proposed for the forecasting, and the obtained result demonstrate the 

proposed method exhibits higher accuracy and superb predictive capability in 

comparison to some previous models available in the literature. 
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