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CHAPTER 1

INTRODUCTION

1.1 Introduction

In this chapter, review of the Newtonian and non-Newtonian �uids is given. A

background of the research and problem statement is presented. We have also high-

lighted the objectives and scope of the study, research methodology and �nally, signif-

icance of the study.

1.2 Research Background

To most �uid dynamists, �uid dynamics is concerned with the study of Navier-

Stokes' �uids. Probably no other �uid model has been as carefully scrutinized as the

Navier-Stokes' model. While Newton (1687) formulated a one dimensional form as

the model. Navier modi�ed the Newton's model by adding the molecular interaction

force. We attribute Navier (1827) and Stokes' (1845) for the derivation of equations of

motion for Newtonian �uids. Poisson (1831) removed the Navier force, derived the

Newtonian viscous �ow model. Saint-Venant (1843), published the correct derivation

of the Navier-Stokes equations for a viscous �uid and was the �rst to properly identify

the coef�cient of viscosity and its role as a multiplying factor for the velocity gradients

in the �ow. Finally the work of Stokes' (1851) led to the model now referred to as the

Navier-Stokes' �uid model (Newtonian �uid model). The Navier-Stokes' �uid model
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has occupied a central place in �uid mechanics for over a century and a half. Basic

questions related to the mathematical properties of equations governing the �ow of

viscous �uids remain open. To predict the response of such �uids in case of turbulent

conditions has evaded the physicist and engineers. However great efforts have been

made to gain an understanding of the laminar �ow of such �uids (for example see

Ladyzhenskaya (1970)). Fluid mechanics is a base of advanced research, even for those

working in different areas. In the beginning of the 20th century Lunding Prandtl has

given a new dimension to �uid mechanics. He introduced viscosity in the �uid and thus

unifying hydraulics and theoretical hydrodynamics. The Navier Stokes' equations were

used for complete description of Newtonian �uid �ows. Due to the non-linearity effect,

it is not easy to solve the Navier Stokes' equations and only in very few cases exact

analytical solutions are exist in literature. The situations to �nd an exact solution for the

Navier Stokes' equations having importance particularly in investigations to describe

the viscous �uid motion. Same Navier-Stokes' solutions can be obtained for other

engineering applications, which also yield considerable physical insight. However, the

applicability of Navier-Stokes' equations is limited to simple �uids like air and water,

known as Newtonian �uids. A large number of practical Newtonian applications deal

with important problems, for instance, external past air planes, internal �ows within jet

engine and free surface �ows about ships, submarines etc.

These �uids obeying the Newton's law of viscosity which has the following

mathematical expression

� yx _
du

dy
; (1.1)

� yx = �
du

dy
: (1.2)

In above expression � yx is shear stress, � is dynamic viscosity and du=dy is the rate

of strain for unidirectional and one-dimensional �ow. Simply, this means that the �uid

continues to �ow regardless of the forces acting on it. For example, water is Newtonian

because it continues to exemplify �uid properties no matter how fast it is stirred or

mixed.

While some �uids can be well presented by the theory of Navier-Stokes' equa-

tions but there are many �uids of practical importance whose response cannot be ade-



3

quately characterized by the Navier-Stokes' model. In industrial applications, there are

numerous �uids and even more numerous process to which the �uids are subjected for

which the Nevier-Stokes' model is inappropriate. Thus �uids which do not obey the

Newton's law of viscosity (1:2) are called non-Newtonian �uids. In other words, non-

Newtonian �uids are those whose �ow properties are not described by a single constant

value of viscosity. For such �uids shear stress is directly and non-linearly proportional

to the deformation rate. Mathematically

� = k

�
du

dy

�n
; n 6= 1; (1.3)

where constant k is the consistency index and n is the behavior index. Many �uids such

as ketchup, starch suspensions, paint, blood, shampoo, polymer solutions and molten

polymers are non-Newtonian.

Recently, considerable attention has been devoted to the problem of how to pre-

dict the behavior of non-Newtonian �uids. This is due to the fact that such �uids like

molten plastics, pulps, slurries, emulsions, petroleum drilling etc. do not obey the New-

tonian postulate that the stress tensor is directly proportional to the rate of deformation

tensor, are produced industrially in increasing quantities. The �ow characteristics of

non-Newtonian �uids are quite different from Newtonian �uids. Therefore, the �ows of

non-Newtonian �uids attracted the researchers more than Newtonian �uids simply be-

cause of their several technological and industrial applications. Non-Newtonian �uids

are also important in the �elds of processing of foods, movement of biological �uids,

plastic manufacture, performance of lubricants etc. The interest of the researchers to

study non-Newtonian �uids have been increased in the last �ve decades due to many

connections with applied sciences.

In this dissertation we will be concerned with both Newtonian and non-Newtonian

(second grade) �uids. Firstly a brief history of the unsteady �ow of viscous �uid has

been presented. The combined effects of magnetohydrodynamic and porosity of the

medium are also discussed. Secondly, a short review of the non-Newtonian �uids is

presented related to the problems chosen for this dissertation. There are very few cases

in which the exact solutions of Navier-Stokes' equations exist. These solution are even

dif�cult to obtain for Newtonian �uid. This is because the non-linearity occurs due
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the inertial term in the Navier-Stokes' equations. However, under certain restrictions

one can easily obtain the exact solutions for Newtonian �uids. Stokes' in 1851 and

Rayleigh in 1911 (for detail discussion see Schlichting (2000)) obtained the exact so-

lutions for the �rst and second problem of Stokes' for a Newtonian �uid by using

similarity transformation. Since then the �ow over a �at plate with different boundary

and initial conditions has been investigated by many authors and become the focus of

their research. As early as Penton (1968), has presented a closed form solution for the

�ow of viscous �uid due to oscillating motion of the plat. Tokuda (1968) determined

the exact solution for a Newtonian �uid when the �ow in �uid is induced due to the

sudden motion of the plate.

Makinde and Mhone (2005) investigated the combined effects of transverse

magnetic �eld and radiative heat transfer for the unsteady �ow of a Newtonian �uid

passing through a channel �lled with saturated porous medium and nonuniform wall

temperature. The motion in the �uid is obtained by the external pressure gradient of the

oscillatory form and the exact solutions are obtained for the velocity and temperature

�elds. Fetecau et al. (2008) obtained the starting solutions of Stokes' second problem

for Newtonian �uid by using Laplace transform method.

The inadequacy of Classical Navier-Stokes theory to describe rheological com-

plex �uids such as polymer solutions, blood, paint, certain oils and greases led to the

development of several theories of non-Newtonian �uids. Because of the complexity

of these �uids several constitutive equations have been proposed. These constitutive

equations are complicated and contain as special cases some of the previous �uids.

The simplest and widely studied �uid in the grade models is called the second grade

�uid. The unsteady unidirectional �ows of a second grade �uid have been studied by

Ting (1963) who was the �rst author on this subject. He obtained the solution of sec-

ond order �uid in a bounded region. The equation of motion of incompressible second

grade �uid is of higher order than the Navier-Stokes' equations and some additional

boundary conditions are required. In order to overcome the dif�culty, work has been

done on acceptable boundary conditions by Fosdick et al. (1969). A critical review on

the boundary conditions has been given by Rajagopal (1995).

The motion of a �uid caused by the oscillations of a �at plate, also named as
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Stokes' second problem is not only of fundamental theoretical interest but it also oc-

curs in many applied problems. The starting solutions tend to the steady-state solutions.

Such steady solutions, corresponding to the different oscillations of a rigid plate or to an

oscillating pressure gradient in a second grade �uid, have been studied by many authors.

Hayat et al. (1998) obtained exact analytic solution for the �ow of non-Newtonian �uid

of grade two generated by periodic oscillations of a plane. The velocity �eld and the

moment of the frictional forces are calculated. Siddique et al. (1999) obtained the ex-

act solutions for the �ows of a non-Newtonian �uid between two in�nite parallel plates

by using the theory of Fourier transform. The �ows discussed are generated by peri-

odic oscillations of one of the plates. Some interesting �ows caused by certain special

oscillations are also studied. In an other paper Hayat et al. (2000) obtained the exact

analytic solutions for a class of unsteady unidirectional �ows and the frictional forces

of an incompressible second grade �uid. The periodic Poiseuille �ow and frictional

force due to an oscillating pressure gradient are examined. Very recently Nazar et al.

(2010) obtained the exact solutions for the �ow of second grade �uid. He obtained the

starting solutions by using Laplace transform.

Further the effect of an external magnetic �eld on �ows through a porous medium

has gained an increasing attention through the years. The interest in this �eld is due

to the wide range of applications either in engineering or in geophysics. Thus an ex-

act analytical solution for a Newtonian �uid between ecentric rotating disk with MHD

was presented by Mohanty (1972). Erkman (1975) considered the steady �ow of a

conducting viscous incompressible �uid between two parallel non-conducting plates

rotating about different axes with the same angular velocity in the presence of a uni-

form transverse magnetic �eld. He obtained an exact solution for velocity �eld and for

the induced magnetic �eld. In addition, the analysis of hydromagnetic �ows through

a porous medium has also been studied by several authors. Hayat et al. (2007 (a))

considered steady �ow of a second grade �uid in a porous channel. The constitutive

equations are those used for a second grade �uid. The �uid is electrically conducting

in the presence of a uniform magnetic �eld applied in the transverse direction to the

�ow and passing through the porous medium. They obtained an analytical solution by

employing a homotopy analysis method (HAM). Khan et al. (2007) obtained the exact

solutions for electrically conducting Oldroyd-B �uid passing through a porous medium.
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The �ow is induced due to constantly accelerated and oscillating plate. Expressions for

the corresponding velocity �eld and the adequate tangential stress are determined by

means of the Fourier sine transform. In an other paper Khan et al. (2008) concentrated

on the unsteady �ows of a magnetohydrodynamic (MHD) second grade �uid �lling a

porous medium. The �ow modeling involves modi�ed Darcy's law. Three problems

are considered. They are (i) starting �ow due to an oscillating edge, (ii) starting �ow

in a duct of rectangular cross-section oscillating parallel to its length, and (iii) starting

�ow due to an oscillating pressure gradient. Analytical expressions of velocity �eld

and corresponding tangential stresses are developed.

This project speci�cally considers the study of incompressible Newtonian and

second grade �uids �ows between two in�nite parallel plates. The lower plate is taken

at y = 0; while the upper plate is faraway from the lower plate such that there is no

disturbance of �uid. The �uid is taken electrically conducting and passing through the

porous medium.

In the present work, the �ow in the �uid is induced due to oscillations and the

accelerated motion of boundary. Moreover, the study on the �ow of a viscous �uid over

an oscillating and constantly accelerated plate is not only of fundamental theoretical

interest but it also occurs in many applied problems such as acoustic streaming around

an oscillating body. For the �ow of an incompressible viscous �uid caused by the

oscillation of the plane wall, when the �uid motion is set up from rest, the velocity �eld

contains transient as well as steady parts. The transient parts gradually disappear in

time.

An other important aspect in �uid mechanics is the consideration of slip con-

dition. One of the corner stone on which the �uid mechanic is built is the no slip

condition. But there are situations where the no slip condition does not work. For ex-

ample in the case of many polymeric liquids when the weight of the molecules is high,

the molecules near to the boundary show slip at the boundary. Then the no-slip bound-

ary condition is not appropriate. In addition, in many problems like thin �lm problems,

rare�ed �uid problems, �uids containing concentrated suspensions and �ow on mul-

tiple interfaces, the no-slip boundary condition fails to work. To tackle this problem,

Navier (1823) for the �rst time suggested the general boundary condition which shows
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the �uid slip at the surface. According to Navier the difference of �uid velocity and

the velocity of the boundary is proportional to the shear stress at that boundary. The

proportionality constant is called the slip parameter having dimension of length. More

speci�cally, by the slip conditions we mean that the velocity of the �uid particles in

the neighborhood of the stationary plate is not the same as that of the plate. Some

interesting investigations explaining the slip effects are given by many authors. Like

Roux (1999) considered the slip effect. He obtained the exact solutions for the second

grade �uid. Khalid et al. (2004) examined the consequences of the slip at the plates.

Stokes' and Couette �ows of viscous �uid produced by an oscillatory motion of a wall

are analyzed under conditions where the no slip assumption between the wall and the

�uid is no longer valid. The authors in this paper obtained the exact solutions by using

the Laplace transform method. These solutions are expressed both in steady periodic

and transient parts. Keeping in mind the importance of the slip condition, in this study

we have considered the slip effects on the accelerated �ows of Newtonian �uids.

Several analytical techniques are available in the literature for �nding the exact

solutions of �uid �ow problems. In this project we will use Laplace transform method

for �nding the exact solutions of the proposed problems. Laplace transform method

is a widely used integral transform method for �nding the solutions of boundary and

initial value problems. However, this technique is well suited for the initial value prob-

lems. It has several important applications in mathematics, physics, engineering, and

probability theory. It has the ability to solve the differential equations which contin-

uously arise in engineering problems. An important application of Laplace transform

occurs in the solution of ordinary differential equations which are cast in the form of

initial value problems. This method is widely used for �nding the solutions for the

free convection problems, thermal radiation problems and in most of the cases the free

convections problems taking into account the combined effects of heat mass transfer.

Few recent attempts in the �eld, tackled by Laplace transform method are made by

Vieru et al. (2008) ; Fetecau et al. (2008), Toki (2009), Narahari (2010) ; Chandrakala

(2010) ; Chaudhary (2010) and Rajesh (2010). Properties of Laplace transform make

the transform very appealing as means of �nding solutions provided the inverse trans-

form can be easily found. Here we brie�y introduce this method for the solutions of

partial differential equations and will discuss about its existence (see Appendix-E).
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1.3 Signi�cance of the Study

The signi�cance of this study is vast and touches nearly every human endeavor.

The science of meteorology, physical oceanography and hydrology are concerned with

naturally occurring �uid �ows, as are medical studies of breathing and blood circula-

tion. All transportation problems involve �uid motion, with well-developed specialties

in aerodynamics of air craft and rockets and in naval hydrodynamics of ships sub-

marines. Almost our electric energy is developed either from water or from steam

�ow through turbine generators. All combustion problems involve �uid motion, as do

the more classical problems of irrigation, �ood control, water supply, sewage disposal,

projectile motion, oil and gas pipelines. The motion of a viscous �uid caused by the os-

cillations of �at plate played a vital rule in many branches of science and engineering.

Similarly certain materials such as polymers, molten plastic, lubricants, arti�cial �bres

and many others do not come under the de�nition of the Newtonian �uid, such �uids

are generally called non-Newtonain �uids. One can see the importance of these �uids

in the �eld of technology. The study of non-Newtonian �uids have several applications

that occur in the industry such as the extrusion of polymer �uids , solidi�cation of liq-

uid crystals, cooling of metallic plate in a bath. Due to the practical and fundamental

association of these �uids to industrial problems several researchers have studied the

�ows of non-Newtonian �uids such as Tanner (1962) and Rajagopal (1984). The study

of electrically conducting �uids play an important role in �uid �ow problems. The

most characteristic biological �uid is blood, which behaves as a magnetic �uid due to

the complex interaction of the intermolecular protein, cell membrane hemoglobin as a

form of iron oxides. Since blood is electrically conducting �uid, the MHD principles

may be used to deccelerate the �ow of blood in human arterial system and there by it

is useful in the treatment cardiovascular disorders (see refs Katz et al.(1938) and Ram-

chandra Rao et al. (1986)). Keeping in mind the above facts, the results obtained from

this project will be signi�cant because of the following reasons.

These results can be used as the basis for �uid �ow problems frequently occur-

ring in engineering and applied sciences. The obtained results will help in checking the

accuracy of the solutions produced via numerical schemes. High quality research will

be promoted by producing papers in indexed journals.
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1.4 Objectives and Scope of Research

The main objectives of this project is to develop the analytical solutions for the

unsteady incompressible �ow of Newtonian and second grade �uids for the following

problems.

1. The MHD �ow of a Newtonian �uid in a porous medium.

2. Slip effects on accelerated �ows of a hydromagnetic �uid in a porous medium

3. Unsteady MHD �ows of a second grade �uid in a porous medium.

The scope of this project is as follows:

This study takes into consideration the unsteady, incompressible, unidirectional

and one-dimensional �ows of a Newtonian and second grade �uid. The �uid is electri-

cally conducting and passing through a porous medium. The no slip and slip conditions

are considered for Newtonian �uid whereas only no slip condition for second grade

�uid. The governing equations have been solved by using Laplace transform. The con-

sidered �uids in this project are electrically conducting and passing through the porous

medium.

1.5 Thesis Outlines

This thesis encounters six chapters including this introductory chapter, in which

we have presented the research back ground signi�cance and objectives of the research.

In Chapter 2, a literature review of Newtonian and non-Newtonian (second grade) �u-

ids is presented. The available work in the literature closely related to the problems

considered in this project is discussed in details. The Stokes' problems are well de-

scribed in this chapter. In additions several extensions of Stokes' problems made by

different researchers in the �eld are also studied. The electrically conducting New-

tonian and non-Newtonian �uids passing through a porous medium with slip and no

slip conditions are also discussed. The problem in Chapter 3, is concerned to develop

the analytical solutions for the unsteady incompressible �ow of Newtonian �uid. The
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�uid is electrically conducting and passing through a porous medium. The motion in

the �uid is induced due to constantly acceleration and oscillations plate. The expres-

sions for velocity and shear stress �elds are determined by Laplace transform method.

The derived steady-state and transient solutions satisfy the imposed initial and bound-

ary conditions. Graphs are sketched and discussed for various emerging parameters for

both sine and cosine oscillations of the plate. It is observed that the velocity and shear

stress �elds are strongly dependent on these parameters. Further, it is noted that both

the velocity and shear stress �elds decrease for both types of oscillations with an in-

crease in the magnetic parameterM: This phenomenon is reversed for the permeability

parameter K of a porous medium when compared with the magnetic parameterM: As

expected that the strongest shear stress occurs near the plate in both cases and decreases

away from the plate. The in�uence of time on the velocity and shear stress �elds is also

studied. It is found that the required time to reach the steady-state for cosine oscilla-

tions of the wall is smaller than that of the sine oscillations of the wall for both velocity

and shear stress �elds. However, the required time decreases if the frequency ! of the

velocity increases. In order to check the accuracy of the results obtained in this chapter

with the existing results in the literature, comparative diagrams have also been plotted.

Chapter 4 analyzes the unsteady magnetohydrodynamic (MHD) �ow of a sec-

ond grade �uid saturates a porous medium. The exact solutions for cosine and sine

oscillations of the plate are obtained. The methodology used for the solutions of the

problem is similar to the previous chapter. The obtained solutions are presented as a

sum of steady-state and transient solutions. The known solutions for the second grade

�uid in the absence of porous medium (1=K ! 0) and applied magnetic �eld (M ! 0)

are also recovered. The analytical results have been displayed for dimensionless para-

meters through several graphs. It is found that the velocity increases with the increase

in the values of second grade parameter � for cosine oscillations and decreases for sine

oscillations of the plate. Further, it is noted that the velocity decreases with the increase

in magnetic parameterM for both types of oscillations. It is because of the increasing

values of the opposing force (Lorentz force) which cause the �uid to move slowly. If

we compare the permeability parameter K of a porous medium with magnetic para-

meter M , it has an opposite effect on the velocity �eld. The comparison between our

solutions with the existing solutions in the literature has also been made.
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In Chapter 5, we investigate the in�uence of slip condition on the unsteady mag-

netohydrodynamic (MHD) �ow of Newtonian �uid �lls a porous space above the plate

at y = 0. The magnetohydrodynamic (MHD) �ow in the �uid is carried out due to the

accelerated motion of the plate. Both constant and variables �ow cases are considered.

Darcy's law for Newtonian �uid is also incorporated. Using Laplace transform tech-

nique, the exact solutions for velocity and shear stress �elds are obtained for constant

and variable accelerated �ows. The analytical results have been plotted for the indis-

pensable dimensionless parameters to show the in�uences on velocity and shear stress

�elds. It is found that the velocity and shear stress for both types of accelerated �ows

decrease with the increasing values of the slip parameter 
 near the wall. The effects of

the magnetic parameterM on the velocity and shear stress �elds are the same to that of

slip parameter 
 for both type of accelerated �ows. It is due the fact that magnetic �eld

produces resistance in the �ows and results to decrease the velocity and shear stress by

increasing the values ofM . The behavior ofK on the velocity and shear stress for con-

stant and variable accelerated �ows absolutely opposite to those of magnetic parameter

M and slip parameter 
. It is worth noted that the permeabilityK of a porous medium

reduces the resistance and hence cause the velocity and shear stress to increase with the

increasing values of K. The dimensionless time � is an increasing function of velocity

and shear stress �elds. The diagrams for the limiting cases have also been sketched.

Finally this dissertation has been summarized in Chapter 6 and the recommendations

for future research have been highlighted.
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