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ABSTRACT 
 
 
 
 

The three-dimensional axisymmetric stagnation point flow have applications in 

many manufacturing processes in industry such as the boundary layer along material 

handling conveyers, the aerodynamic extrusion of plastic sheet, and the cooling of an 

infinite metallic plate in cooling bath. In this thesis, mathematical models to study the 

heat and mass transfer of an unsteady three-dimensional body near the stagnation point 

are developed. Problems considered involve the flow in viscous fluid and micropolar 

fluid. In addition, the effect of heat generation is also considered for viscous fluid 

problem. The governing equations which consist of coupled nonlinear partial differential 

equations are solved numerically through an implicit finite difference scheme known as 

the Keller-box method. The results presented include the velocity, temperature and 

microrotation profiles as well as the fluid flow and heat transfer characteristics for 

various parametric physical conditions such as the absorption parameter, Q and the 

material or micropolar parameter, K. The results obtained show that the effect of heat 

generation, Q gives rises to the skin friction and heat transfer coefficients. However, the 

skin friction and heat transfer coefficients are decreased when the material parameter, K 

is increased. 
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ABSTRAK 
 
 
 
 

Aliran titik genangan tiga matra simetri sepaksi mempunyai pelbagai kegunaan 

di dalam proses pembuatan di industri seperti lapisan sempadan di sepanjang 

pengelolaan bahan-bahan penghantaran, penyemperitan aerodinamik bagi kepingan 

plastik dan penyejukan plat logam tak terhingga di dalam penyejuk mandian. Dalam 

tesis ini, model-model matematik dibina untuk mengkaji pemindahan haba dan jisim 

bagi jasad tiga matra tak mantap berhampiran dengan titik genangan. Masalah-masalah 

aliran yang dipertimbangkan adalah aliran dalam bendalir likat dan bendalir mikrokutub. 

Bagi aliran bendalir likat, kesan penjanaan haba turut dipertimbangkan. Persamaan 

menakluk yang terdiri daripada persamaan terbitan separa yang tak linear diselesaikan 

secara berangka menggunakan skema beza terhingga tersirat yang dikenali sebagai 

kaedah kotak Keller. Keputusan-keputusan yang merangkumi profil-profil halaju, suhu 

dan mikroputaran, serta ciri-ciri aliran bendalir dan pemindahan haba dipaparkan secara 

grafik bagi beberapa parameter penyerapan, Q dan parameter bahan atau mikrokutub, K. 

Keputusan yang diperoleh menunjukkan bahawa kesan penjanaan haba, Q meningkatkan 

pekali-pekali geseran kulit dan pemindahan haba. Walau bagaimanapun, pekali-pekali 

ini semakin berkurangan apabila berlakunya peningkatan nilai-nilai parameter bahan, K. 
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CHAPTER 1 
 
 
 
 

INTRODUCTION 
 
 
 
 
1.1 Introduction 
 
 

The fluid immediately adjacent to the surface to stick to the surface happened 

because of the effect of friction. In a simple word, there is no slip condition at the 

surface and that frictional effects were experienced only in a thin region near the surface. 

In other word, this region is known as the boundary layer. This theory was first proposed 

by Ludwig Prandtl on 8 August 1904. On that day, a few mathematicians and scientists 

assembled including Prandtl. Just in 10 minutes of presentation, Prandtl was able to 

bring the new dimension in fluid dynamics by introducing the theory of boundary layer. 

Boundary layer equation was reduced from Navier-Stokes equation that was first derived 

by Claude Louis Navier in 1822, while George Stokes independently derived it in 1845. 

Boundary layer equation has the parabolic behavior, which gives simplicity to analytical 

and numerical solutions. By marching downstream from where the flow encounters a 

body, these equations can be solved step by step. In 1905, Prandtl proposed the 

boundary layer equations for steady two-dimensional flow. He also proposed some 

solution approaches to solve the equations. 

 
 Later, in 1908, Prandtl’s student, Heinrich Blasius published a paper entitled 

“Boundary Layers in Fluids with Little Friction”. He solved both cases of flat plate and 

circular cylinder. He performed more accurate solution for the skin friction drag 

compared to the original paper of Prandtl for the case of flat plate. On the other hand, the 

solution gave the separation points on the back of the cylinder. Although the important 
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finding by Blasius and Prandtl’s research group have paid slight attention by scientists 

and researchers, former student of Prandtl, Theodore von Karman in 1921 successfully 

obtained a momentum integral equation that is proved to be directly applicable to a huge 

number of practical engineering problems especially in the field of fluid dynamics. Since 

then, the theory of boundary layer equations has attracted much attention among the 

technical society. 

 
 Skin friction drag on airships and airplanes was the first serious application of 

the boundary layer theory in late 1920s. After that, this theory become standardizes 

among the airplane designers and researchers have written many books such as 

“Boundary Layer Theory” by Hermann Schichting. In 2000, this book is already in its 

8th edition since it has been published in early 1930s, thus this shows the importance of 

Prandtl’s theory throughout the last decades until today. Nowadays, problems involving 

boundary layer flow near the stagnation point can be found in many high technology 

products including engineering applications such as geothermal energy recovery, food 

processing and glass fibre. Various aspects of the flow and heat transfer problems for 

boundary layer flow near the stagnation point have been explored in many 

investigations. 

 
 Poots (1964) derived the boundary layer equations for steady three-dimensional 

stagnation point flow. From his study, a similar its solution of the boundary layer 

equations can be found if the parametric lines of the curvilinear coordinates on the 

surface are chosen to be lines of curvature. These solutions depend on several 

parameters such as the Prandtl number, Grashof number and ratio of two principal radius 

of curvature of the surface at the stagnation point. Afterward, several researchers 

considered the cases of boundary layer on three-dimensional stagnation point flow such 

as Banks (1974), Ingham et al. (1984), Kumari and Nath (1986), Slaouti et al. (1998) 

and Sharidan et al. (2007) and various effects have been taken into the problems 

investigated. 
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1.2 Research Background 
 
 
 Several researchers have studied the free convection on boundary layer flow near 

the stagnation point. These studies have been considered as the important finding due to 

their applications in the technology solutions. Poots (1964) started to derive the steady 

three-dimensional boundary layer equations. Then, Banks (1974) took this advantage 

and presented the special results for the negative region of curvature parameter. Kumari 

and Nath (1986) presented the results for the case of hydromagnetic flow in the presence 

of an applied magnetic field. Besides, Slaouti et al. (1998) considered the case where 

there is an initial steady state that is perturbed by a step change in the wall temperature.  

 
On the other hand, by taking the effect of large injection rates, Eswara and Nath 

(1999) studied the unsteady laminar incompressible mixed convection boundary layer 

flow at a three-dimensional stagnation point. The effect of a small fluctuating 

gravitational field characteristic of g-jitter on heat and mass transfer has been 

investigated by Sharidan et al. (2007). Hayat et al. (2010) obtained the analytical 

solution of three-dimensional magnetohydrodynamic (MHD) flow in a porous space by 

using the homotopy analysis method (HAM). Since all studies have presented 

comparison between the results of steady state and the results obtained by Poots (1964), 

we are inspired to investigate the behavior of heat and mass transfer on viscous and 

incompressible fluid as our first problem and to do the same comparison to check the 

validity of our results as compared with the previous studies. 

 
 Moreover, we have to extend our first problem by taking the effect of internal 

heat generation or absorption. The literature review on heat generation issues have been 

revealed by many researchers and published in various journals. Foraboschi and 

Federico (1964) were the first to introduce the volumetric rate of heat generation. In 

1993, heat transfer characteristics in boundary layer of a viscous fluid over a stretching 

surface with the effect introduced by Foraboschi and Ferderico (1964) have been studied 

by Vajravelu and Hadjinicolaou. Chamkha and Camille (2000) considered the effect of 

thermophoresis together with heat generation of hydromagnetic flow over a flat plate. 
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The most recent would be the study on natural convection along a wavy surface of body 

that was investigated by Molla et al. (2004). 

 
 In the third problem, we consider the case that relates to the micropolar fluids. 

The theory of micropolar fluids, which was first proposed by Eringen (1966) has gained 

the most attention since the traditional Newtonian fluids cannot precisely describe the 

characteristics of the fluid flow with suspended particles. The model for unsteady 

boundary layer flow of a micropolar fluid near the forward stagnation point of two-

dimensional infinite plane wall was reported by Lok et al. (2003a). Then, Lok et al. 

(2003b) changed the case of forward stagnation point to rear stagnation point (Lok et al., 

2003a). On the other hand, Sharidan et al. (2005b) demonstrated the behavior of g-jitter 

induced free convection in micropolar fluid near the stagnation point of three-

dimensional body. Furthermore, Xu et al. (2006) presented the series solutions from Lok 

et al. (2003a) by means of HAM (Liao, 2003) that have produced more accurate results 

over the whole range of material parameter. Recently, Cheng (2010) examined the 

nonsimilar boundary layer solutions for double diffusion by natural convection along a 

sphere. 

 
 Since the unsteady three-dimensional body near the stagnation point gives much 

impact on the heat transfer process, it is necessary to extend the previous works to obtain 

much better results. These results will be used for validation purposes in related 

industries, for example in the manufacturing industry. Thus, it is the purpose of this 

study to investigate the unsteady three-dimensional body near the stagnation point on the 

free convection for viscous and micropolar fluids. 

 
 
 
 
1.3 Problem Statements 
 
 
 This study will explore the following questions. How can we compare the 

unsteady three-dimensional stagnation point flow and the steady three-dimensional 

stagnation point flow? What are the transformations that can be used to reduce the 
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number of variables on the governing equations that satisfy the numerical approach? 

What are the effects of heat generation and micropolar or material parameters to the 

flow characteristics on the wall shear stress (skin friction) and the wall heat flux (heat 

transfer from the surface)? How do the velocity, microrotation and temperature profiles 

affected due to the presence of heat generation effect and micropolar fluid? 

 
 
 
 
1.4 Objective and Scope 
 
 
 The objective of the study is to investigate theoretically the unsteady boundary 

layer flow near the three-dimensional stagnation point by solving mathematical models 

for the following incompressible and viscous fluid problems: 

 
1. Unsteady free convection flow near the stagnation point of a three-

dimensional body. 

2. Unsteady free convection flow near the stagnation point of a three-

dimensional body with internal heat generation or absorption. 

3. Unsteady free convection flow near the stagnation point of a three-

dimensional body in a micropolar fluid. 

 
Various parameters such as the Prandtl number, curvature parameter, heat generation 

parameter and material parameter are considered in order to investigate the behavior of 

flow and heat transfer characteristics for various values of each parameter. 

 
 
 
 
1.5 Significance of the Study 
 
 
 Boundary layer and stagnation point flow have significant impact on the 

technology applications. Most of the man-made technologies that are produced in 

various industries, such as the design of packed bed reactors, food processing and 



6 
 

spacecraft maneuvers can be explained using boundary layer flow near a stagnation 

point theory as well some suitable effects. 

 
 Specifically, boundary layer theory find its application in the calculation of the 

skin friction drag which acts on a body as it is moved through all type of fluids. This 

theory is very useful on the situation where the drag experienced by a flat plate at zero 

incidence, the drag of the ship, of an aeroplane wing, aircraft nacelle or turbine blade. 

Boundary layer also gives the answer to the very important question of the shape that 

should be for the body in order to avoid such detrimental separation. Furthermore, this 

theory can explains the phenomena that happen at the point of maximum lift of an 

aerofoil, which is associated with stalling. 

 
 Subsequently, the study of heat generation in all type of fluids is important in 

viewing several physical problems, for instance those dealing with chemical reactions 

and those concerned with dissociating fluids. The temperature distribution and particle 

deposition rate can be affected by the possible heat generation. This may occur in such 

applications related to nuclear reactor cores, fire and combustion modeling, electronic 

chips and semi conductor wafers. 

 
 In addition, boundary layer flow near a stagnation point embedded in micropolar 

fluid is also considered to be an important field of study in various engineering 

applications, such as extrusion of polymer fluids, solidification of liquid crystals, 

cooling of a metallic plate in a bath, animal bloods, exotic lubricants and colloidal and 

suspension solutions, for which the classical Navier-Stokes theory is insufficient. 

 
 Recently, micropolar fluid is used to model various biological flows. It is 

because the flow of a micropolar fluid is less prone to instability than that of a classical 

fluid as part of angular momentum is lost in the rotation of particles. Motion of an air 

bubble in blood flow, and an exchange of fluid between a circular capillary with a rigid 

wall and the surrounding tissue were modeled by Maurya (1985). Thus, the biological 

fluids with inner structure (body fluids) is the interesting topic to be derive the attention 

since there is more secret in our body and maybe it can help the scientist to cure the 

AIDS viruses. 
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 Finally, this study is a medium to enhance understanding of fluid mechanics and 

heat transfer phenomena and also the generation of efficient algorithms to solve the 

related computational fluid dynamics problems. 

 
 
 
 
1.6 Thesis Outline 
 
 

This thesis consists of six chapters. Chapter 1 begins with the introduction, 

background of the research, statement of problem, the objectives and scope, and the 

significance of this study in numerous applications. The literature review has been 

extensively studied in Chapter 2. In Chapter 2, there are three sections presented 

specifically for each problem considered in this study. Chapter 3 and Chapter 4 discuss 

the derivation of equation of motion in three-dimensional and boundary layer equation 

for laminar free convection on isothermal surface, respectively. For boundary layer 

equation, we do not consider the viscous dissipation and the work done against 

compression. 

 
In Chapter 5, we discuss the first problem on unsteady free convection flow near 

the stagnation point of a three-dimensional body in a viscous and incompressible fluid. 

This chapter will be divided into five main sections where the first section is the 

introduction of the problem and the second section will describe the details on the basic 

equations. The solution procedure for this problem is explain in the third section that 

including the finite-difference method, Newton’s method, block-elimination method and 

the starting conditions for the programming setup. The finals section contains the 

conclusion of this problem. 

 
 On the other hand, in Chapter 6, we discuss free convection boundary layer 

problem of three-dimensional stagnation point as well, but we considered the effect of 

internal heat generation or absorption inside the problem. We begin this chapter with 

introduction of the problem. Then, we describe in details the basic equations of the 
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problem and show the results and discussion in second and third sections. Finally, we 

provide the conclusion for this problem. 

 
Chapter 7 discusses the unsteady free convection flow near the stagnation point 

of a three-dimensional body in a micropolar fluid. The division of sections is similar to 

those in Chapter 6. All the problems in chapters 5 to 7 are solved by using implicit 

finite-difference scheme known as Keller-box method. The details for this method are 

shown in the third section of Chapter 5. The obtained numerical results which include 

the velocity and temperature profiles as well as the skin friction coefficient and the heat 

transfer coefficient are presented in chapters 5 to 7. Besides, the microrotation profiles 

are explained in Chapter 7 for the case of micropolar fluid. Finally, the summary of this 

study is given in Chapter 8. In this chapter, we also include some suggestions for future 

research. 
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