A COMPARISON OF PILE PERFORMANCE BASE ON STATIC FORMULAS AND DYNAMIC LOAD TEST

MUHD HARRIS BIN RAMLI

A project report submitted in partial fulfillment of the requirements for the award of degree of Master of Engineering (Civil-Geotechnic)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > JULY, 2006

ABSTRACT

Since the early of pile static formula suggested by Meyerhof (1956) up until now, several pile design method is being proposed. Between one method and another, result differences are still questionable. This study is conducted base on driven pile 300 mm diameter spun pile constructed in Malaysia on sand or fine soil. This is to determine the differences between several pile design methods by Meyerhof (1976), Janbu (1976), Vesic (1977), Coyle and Castello (1981), α method (1985) and λ method (1972) with the End-bearing capacity and Skin Resistance capacity value from dynamic load test using Pile Driving Analyzer (PDA). All the design method is also analyzed by using soil friction angle correlation by Schmertmann (1975), Peck, Hanson and Thornburn (1974) and Hatanaka and Uchida (1996). From analysis it can be found that Meyerhof, Coyle and Castello, and λ method are the most conservative which its value lower or almost near the PDA value. Then follow by Janbu method and α method which its value almost near PDA or slightly above it. Vesic method is found to be very unconservative which it value well above PDA value. From this study it can be conclude that it is recommended to use either Meyerhof or Janbu Method for estimating end-bearing capacity in sand and silt. For skin resistance in sand it recommended using Meyerhof method. Finally for estimating skin resistance in clayed soil it is recommended to use λ method.

ABSTRAK

Sejak daripada awal kewujudan formula static cerucuk yang telah dicadangkan oleh Meyerhof (1956), beberapa formula rekabentuk cerucuk telah dicadangkan oleh beberapa individu yang lain. Walaubagaimanapun perbezaan rekabentuk antara beberapa formula ini masih lagi menjadi tanda tanya. Kajian ini dijalankan berdasarkan cerucuk kelompang bersaiz 300 mm diameter yang telah ditanam di atas tanah berbutir halus dan berpasir di Malaysia. Kajian ini adalah untuk mengkaji perbezaan keupayaan galas dan geseran kulit cerucuk antara beberapa kaedah rekabentuk cerucuk oleh Meyerhof (1976), Janbu (1976), Vesic (1977), Coyle dan Castello (1981), kaedah α (1985) dan kaedah λ (1972) dengan keupayaan cerucuk yang diperolehi daripada ujian beban cerucuk menggunakan Pile Driving Analyzer (PDA). Kesemua kaedah rekabentuk turut dianalisis menggunakan sekaitan sudut geseran tanah oleh Schmertmann (1975), Peck, Hanson dan Thornburn (1974), dan Hatanaka dan Uchida (1996). Daripada analysis, dapat dirumuskan bahawa kaedah λ , Coyle dan Castello, dan Meyerhof merupakan kaedah yang paling konsevatif kerana mempunyai nilai keupayaan yang rendah atau hampir dengan nilai PDA. Ini diikuti oleh kaedah α dan kaedah Janbu yang mempunyai nilai yang hampir atau lebih sedikit daripada nilai PDA. Kaedah Vesic didapati merupakan kaedah yang paling tidak konservatif kerana mempunyai nilai yang agak tinggi berbanding dengan nilai daripada PDA. Daripada kajian ini dapat disimpulkan bahawa kaedah Meyerhof dan Janbu merupakan kaedah paling sesuai bagi analisis keupayaan galas tanah pasir dan kelodak. Bagi analisis keupayaan geseran kulit cerucuk ditanam di tanah pasir, kaedah Meyerhof merupakan yang paling sesuai. Akhir sekali, kaedah λ merupakan kaedah yang dicadangkan bagi analysis keupayaan geseran kulit cerucuk ditanam di tanah liat.

TABLE OF CONTENT

CHAPTER	TITLE	PAGE
	TITLE	i
	DECLARATION	ii
	ACKNOWLEDGEMENT	iii
	ABSTRACT	iv
	ABSTRAK	v
	TABLE OF CONTENTS	vi
	LIST OF TABLES	xi
	LIST OF FIGURES	xiii
	LIST OF APPENDICES	xvi
	LIST OF SYMBOLS	xviii
CHAPTER I	INTRODUCTION	1
	1.1 Introduction	1
	1.2 Objective	2
	1.3 Research Scope	3
	1.4 Importance of Study	4
CHAPTER II	LITERATURE REVIEW	5
	2.1.1 Classification of Pile	5
	2.1.1.1 Load-bearing Characteristics	5

	2.1.1.2 Pile Installation Method	6
	2.2 Selection of Pile	7
	2.2.1 Ground Condition and Structure	8
	2.2.2 Durability	9
	2.2.3 Piling Cost	10
	2.3 General Overview of Piled Foundation Design	11
	2.3.1 Factor of Safety	11
	2.4 Effects of Pile Driving in Clays	13
	2.4.1 Influence on Soil Shear Strength and Pile Capacity	13
	2.4.2 Pore Pressure Developed during Driving	15
	2.4.3 Dissipation of Excess Pore Pressure	16
	2.4.4 Displacement Caused by Driving	18
	2.5 Effects of Pile Driving in Sands	21
	2.5.1 Single Piles	21
	2.5.2 Pile Groups	23
CHAPTER III	METHODOLOGY	24
	3.1 Phase One – Research Data	24
	3.1.1 Phase One Stage One – Case Retrieval	24
	3.1.2 Phase One Stage Two –	26
	Information Retrieval	
	3.1.2.1 Data Acquiring From Soil	26
	Investigation Report	
	3.1.2.2 Correlated Data from Soil	26
	Investigation Report	
	3.1.2.3 Data Acquiring From Pile Load	29
	Test Report	

vii

3.1.3 Phase One Stage Three –	29
Analysis Information Preparation	
3.2 Phase Two – Pile Design	30
3.2.1 Pile End-Bearing Capacity (Q_p) Design in	30
Sandy Soil	20
3.2.1.1 Meyerhof's Method (1976) for	31
Estimating (Q_p) in Sandy Soil	
3.2.1.2 Vesic's Method (1977) for	32
Estimating (Q_p) in Sandy Soil	
3.2.1.3 Janbu's Method (1977) for	33
Estimating (Q_p) in Sandy Soil	
3.2.2 Pile Skin Friction Capacity (Q_s) Design in	33
Sandy Soil	
3.2.2.1 Meyerhof's Method (1977) for	34
Estimating (Q_s) in Sandy Soil	
3.2.2.2 Coyle and Castello Method (1981)	35
for Estimating (Q_s) in Sandy Soil	
3.2.3 Pile Skin Friction Capacity (Q_s) Design in	35
Clay	
3.2.3.1 α Method (1977) for Estimating (Q_s) in	35
Clay	
3.2.3.2 λ Method (1977) for Estimating (Q_s) in	37
Clay	
3.3 Phase Three – Research Analysis	38
3.3.1 Phase Three Stage One –	38
Comparison Between Redesign Load	20
Carrying Capacity and Pile Driving	
Analyzer (PDA) Load Carrying Capacity	
3.3.2 Phase Three Stage Two –	40
Accuracy Ratio Analysis	

	3.3.3 Phas	se Three Stage Three –	40
	Desi	ign Parameter Relationship	
	3.4 Phase F	our – Pile Design Guideline	42
	3.4.1 Phas	se Four Stage One –	42
	Rela	ationship Analysis	
	3.4.2 Phas	se Four Final Stage –	42
	Pile	Design Method Recommendations	
CHAPTER IV	RESULT A	ND DISCUSSION	43
	4.1 Sandy S	Soil Study Case	44
	4.1.1 Prep	paration of Analysis Data	44
	4.1.1.1	Direct Design Parameter Value	44
	4.1.1.2	Indirect Design Parameter Value	44
	4.1.2 End	-Bearing Analysis for Sand Study Case	47
	4.1.2.1	Estimation of Theoretical End-Bearing	47
	(Capacity for Sand Soil	
	4.1.2.2	Comparison of Theoretical	50
]	End-Bearing Capacity with Pile	
]	Driving Analyzer (PDA) End-Bearing	
	(Capacity for Sand Soil	
	4.1.2.3	Relationship Analysis for Sand	52
]	End-Bearing Estimation	
	4.1.3 Skir	n Resistance Analysis for Sand	57
	Stuc	ly Case	
	4.1.3.1	Estimation of Theoretical	57
	S	Skin Resistance for Sand Soil	
	4.1.3.2	Comparison of Theoretical	59
	2	Skin Resistance with Pile Driving	
	1	Analyzer (PDA) Skin Resistance for	
	(Sand Soil	

ix

	4.1.3.3	Relationship Analysis for Sand	61
		Skin Resistance Estimation	
	12 Fine S	oil Study Case	63
		eparation of Analysis Data	63
		Direct Design Parameter Value	63
		Indirect Design Parameter Value	64
		d-Bearing Analysis for Fine Soil	66
		idy Case	00
		Estimation of Theoretical	66
	4.2.2.1	End-Bearing Capacity for Silt Soil	00
	4000	Comparison of Theoretical	68
	4.2.2.2	End-Bearing Capacity with Pile	08
		Driving Analyzer (PDA)	
	4 2 2 2	End-Bearing Capacity for Silt Soil	70
	4.2.2.3	Relationship Analysis for Silt	70
	4 2 2 51-	End-Bearing Estimation	70
		in Resistance Analysis for Fine Soil	72
		idy Case	72
	4.2.3.1	Estimation of Theoretical Skin	72
	4000	Resistance for Clay	72
	4.2.3.2	Comparison of Theoretical	72
		Skin Resistance with Pile Driving	
		Analyzer (PDA) Skin Resistance for	
		Clay	
	4.2.3.3	Relationship Analysis for Clay	73
		Skin Resistance Estimation	
CHAPTER V	CONCLU	SION	75
	REFEREN	NCES	77

LIST OF TABLES

TABLE NO. TITLE

PAGE

3.1	The group and classification for analysis in all study case	38
4.1	Pile end-bearing design parameter value taken directly	44
	from the report	
4.2	Pile skin resistance design parameter value taken directly	45
	from the report	
4.3	Soil Friction Angle value correlated from SPT N value in	46
	Soil Investigation Report for Sand End-Bearing Capacity	
	analysis	
4.4	Soil Friction Angle value correlated from SPT N value in	46
	Soil Investigation Report for Sand Skin Resistance	
	analysis	
4.5	Pile design parameter value calculated from formula	47
4.6	Sand theory End-Bearing analyzed used Meyerhof	48
	(1976), Vesic (1977), and Janbu's Method (1976) for	
	Group A Soil Friction Angle	
4.7	Sand theory End-Bearing analyzed used Meyerhof	48
	(1976), Vesic (1977), and Janbu's Method (1976) for	
	Group B Soil Friction Angle	
4.8	Sand theory End-Bearing analyzed used Meyerhof	49
	(1976), Vesic (1977), and Janbu's Method (1976) for	
	Group C Soil Friction Angle	

4.9	Sand theory Skin Resistance analyzed used Meyerhof's	57
	Method (1977), and Coyle and Castello's Method (1981)	
	for Group A Soil Friction Angle	
4.10	Sand Skin Resistance analyzed used Meyerhof (1977),	58
	and Coyle and Castello's Method (1981) for Group B	
	Soil Friction Angle	
4.11	Sand Skin Resistance analyzed used Meyerhof (1977),	58
	and Coyle and Castello's Method (1981) for Group C	
	Soil Friction Angle	
4.12	Pile design parameter value taken directly from the	63
	report	
4.13	Soil Friction Angle value correlated from SPT N value in	65
	Soil Investigation Report for Silt End-Bearing Capacity	
	analysis	
4.14	Silt theory End-Bearing analyzed used Meyerhof (1976),	66
	Vesic (1977), and Janbu's Method (1976) for Group A	
	Soil Friction Angle	
4.15	Sand theory End-Bearing analyzed used Meyerhof	67
	(1976), Vesic (1977) and Janbu's Method (1976) for	
	Group B Soil Friction Angle	
4.16	Sand theory End-Bearing analyzed used Meyerhof	67
	(1976), Vesic (1977) and Janbu's Method (1976) for	
	Group C Soil Friction Angle.	
4.17	Clay theory Skin Resistance analyzed used Alpha	72
	Method (1985) and Lamda Method (1972).	

LIST OF FIGURES

FIGURES NO. TITLE

PAGE

2.1 (a)	End-bearing type of pile	6
2.1 (b)	Skin friction type of pile	6
2.2	Classification of piling system according to the Code	7
	of Practice for Foundation, BS 8004:1986	
2.3	Increase of load capacity with time (Soderberg, 1962)	15
2.4	Theoretical solution for rate of consolidation near a	16
	driven pile	
2.5	Movement of nearby building caused by pile driving	19
	operation	
2.6	The contours of soil friction angle (ϕ) cause by	22
	compaction of sand around driven pile	
3.1	Study methodology flow chart	25
3.2	Variation of the maximum values of N_q^* with soil	31
	friction angle ϕ'	
3.3	Variation of α with c_u/σ'_o	36
3.4	Variation of λ with pile embedment length	37
3.5	Line Chart Theory Redesign value versus Pile	39
	Driving Analyzer value	
3.6	The line chart of Accuracy Ratio against Soil Friction	41
	Angle	
3.7	The line chart of Accuracy Ratio against Overburden	41
	Pressure	

4.1	Theory End-Bearing vs PDA End-bearing graph for All Group	51
4.2	Theory End-Bearing vs PDA End-bearing graph for Group B	51
4.3	Theory End-Bearing / PDA Ratio vs Soil Friction Angle for All Group	53
4.4	Theory End-Bearing / PDA Ratio vs Soil Friction Angle for Group A	53
4.5	Theory End-Bearing / PDA Ratio vs Soil Friction Angle for Group B	54
4.6	Theory End-Bearing / PDA Ratio vs Soil Friction Angle for Group C	54
4.7	Theory End-Bearing / PDA Ratio vs Overburden Pressure for Group B	56
4.8	Theory End-Bearing / PDA Ratio vs Overburden Pressure for Group C	56
4.9	Theory Skin Resistance vs PDA Skin Resistance graph for Group A	60
4.10	Theory Skin Resistance vs PDA Skin Resistance graph for Group B	60
4.11	Theory Skin Resistance vs PDA Skin Resistance graph for Group C	61
4.12	Theory Skin Resistance / PDA Ratio vs Soil Friction Angle for all group	62
4.13	Theory End-Bearing vs PDA End-bearing graph for All Group	69
4.14	Theory End-Bearing vs PDA End-bearing graph for Group B	69
4.15	Theory End-Bearing / PDA Ratio vs Soil Friction Angle for Group A	70
4.16	Theory End-Bearing / PDA Ratio vs Soil Friction Angle for Group B	71

4.17	Theory End-Bearing / PDA Ratio vs Soil Friction	71
	Angle for Group C	
4.18	Theory Skin Resistance vs PDA Skin Resistance	73
	Ratio graph	
4.19	Theory Skin Resistance / PDA Ratio vs Overburden	74
	Pressure graph	

LIST OF APPENDICES

APPENDIX TITLE

PAGE

А	Vesic N_{σ}^* Value use in Pile End-Bearing Design	79
	Analysis	
B / B-1	Summary Soil Investigation Report	81
B / B-2	Summary Pile Load Test Report – PDA Test	105
С	Detail Pile Design Parameter Value Calculation for Sand Study Case	115
D / D-1	Sand Pile End-Bearing Capacity Analysis Summary	120
D / D-2	Example Set 4/Group B Pile End-Bearing Detail Design for Sand Study Case	122
E	Theory End-Bearing vs PDA End-Bearing Graph for Group A and Group C in Sand Study Case	126
F / F-1	Sand Pile Skin Resistance Capacity Analysis Summary	127
F / F-2	Example Set 4/Group B Pile Skin Resistance Detail Design for Sand Study Case	129
G	Detail Pile Design Parameter Value Calculation for Fine Soil Study Case	133

H / H-1	Silt Pile End-Bearing Capacity Analysis Summary	139
H / H-2	Example Set 4/Group B Pile End-Bearing Detail Design	141
	for Fine Soil Study Case	
Ι	Theory End-Bearing vs PDA End-Bearing Graph for	145
	Group A and Group C in Fine Soil Study Case	
J	Clay Pile Skin Resistance Capacity Detail Analysis	146
	Design	

LIST OF SYMBOLS

SYMBOLS

W	Soil moisture content
γ	Unit weight of soil
γ_{sat}	Unit weight of saturated soil
$\gamma_{ m w}$	Unit weight of water
c_{u}	Undrained shear strength
L	Pile penetration length
L'	Pile critical depth (for skin resistance analysis)
$G_{ m s}$	Specified gravity of soil
σ	Soil vertical effective stress / overburden pressure
P_{a}	Atmospheric pressure
$D_{ m r}$	Soil relative density
ϕ	Soil friction angle
D_{50}	Sieve size passing 50% in mm
δ	Soil-pile friction angle
$I_{ m rr}$	Reduced rigidity index for the soil

CHAPTER I

INTRODUCTION

1.1 Introduction

Pile foundations have been in use since prehistoric times. The Neolithic inhabitants of Switzerland drove wooden poles in the soft bottoms of shallow lakes 12,000 years ago and erected their homes on them (Sowers 1979). Venice was built on timber piles in the marshy delta of the Po River to protect early Italians from the invaders of Eastern Europe and at the same time enable them to be close to the sea and their source of livelihood. In Venezuela, the Indians lived in pile-supported huts in lagoons around the shores of Lake Maracaibo. Today, pile foundations serve the same purpose, to make it possible to build in areas where the soil conditions are unfavorable for shallow foundations.

Although it dates back to prehistoric lake villages, until late nineteenth century, the design of pile foundation was based entirely on experience or even divine providence. Modern literature on piles can be said to date from the publication of the *Engineering News* (later to become the *Engineering News-Record*) in 1893, pile- driving formula was proposed (Poulos, H.G. 1980).

Since this first attempt at a theoretical assessment of the capacity of a pile, a great volume of field experimental and empirical data on the performance of pile foundation has been published.

By now there is several design method can be use in pile design but only few is suitable use for practice. Although there is few of this design method, the value estimated different between one and another are still questionable. That which comes to the main interest of this study which method is suitable for a given condition.

In this study which entitles "A Comparison of Pile Performance Base on Static Formulas and Dynamic Load Test", the performance of pile on end-bearing capacity and skin resistance analysis will be study base on the Pile Driving Analysis (PDA) pile capacity value to be compared with several selected analysis method.

1.2 Objective

This study aim is to give a guideline for pile designer to choose which method is suitable for a certain type of soil properties and condition. There is four objective in this study that need to be achieve in order to conclude which pile static formula suitable for a given soil condition:

- 1. To estimate theoretical pile end-bearing capacity (Q_p) and skin resistance capacity (Q_s) for each study cases.
- 2. To compare theoretical pile end-bearing capacity (Q_p) and skin resistance capacity (Q_s) from various pile static formula with dynamic load test on each study cases.

- 3. To determine the relationship between pile end-bearing capacity (Q_p) and skin resistance capacity (Q_s) ratio $(Q_{(Theory)}/Q_{(PDA)})$, with effective vertical stress at the level of pile tip (σ^2) on each study cases.
- 4. To determine the relationship between pile end-bearing capacity (Q_p) and skin resistance capacity (Q_s) ratio $(Q_{(Theory)}/Q_{(PDA)})$, with soil friction angle (ϕ) on each study cases.

1.3 Research Scope

This research is base on the data obtain from Soil Investigation Report and Pile Load Test Report on construction Project in Malaysia. Only large displacement type of pile is consider in this studies because of the availability of data which can give a better analysis result. The type of pile selected for this research is limited to driven pile type 300 diameter spun pile. The load-carrying capacity of the pile point (Qp) and skin friction (Qs) data obtain from dynamic pile load test is using Pile Driving Analyzer (PDA) method.

The estimation of theoretical load-carrying capacity of the pile point (Q_p) is analyze using three type of method which are Meyerhof's Method (1976), Vesic's Method (1977), and Janbu's Method (1976). Whereas the skin friction (Q_s) is analyzed using Meyerhof's Method (1976) and Coyle and Castello Method (1981) for sand and for clayey soils, analysis is using α Method (1985) and λ Method (1972). The selection of these analysis methods is base on the most preferable design method use in Malaysia pile design practice.

1.4 Importance of Study

This study importance because pile and soil interaction is not an easy knowledge to be fully understand, even from the very earliest pile formulation studies by Meyerhof (1956) up until now, still consider as an estimated value.

With the various pile static formula nowadays, the different between one method and another cause a lot of uncertainties which contributing higher safety factor. A higher safety factor in a design mean, a utilization of a larger pile cross section which laterally cause an unnecessary larger piling cost. At a worst case, a proposal of a vital project has to be turn down just because of the piling cost is unreasonable compare to the superstructure itself.

REFERENCES

Bengt B. Broms (1978), "Precast Piling Practice", Royal Institute of Technology, Stockholm

Braja M. Das (2004), "Principles of Foundation Engineering", Fifth Edition, Thomson Brooks / Cole, US

Bustamante M. (1982), "Foundation Engineering", Volume 1: Soil Properties – Foundation design and construction", Presses Ponts et chausses, Paris

Craig R.F (1993), "Mekanik Tanah", Edisi Keempat, Unit Penerbitan Akademik Universiti Teknologi Malaysia, Johor Bahru

Curtis W.G, Shaw G., Parkinson G.I. and Golding J.M. (2000), "Structural Foundation Designers' Manual", Blackwell Sciences Ltd, Oxford

Joseph E. Bowles (1997), "Foundation Analysis and Design", Fifth Edition, The McGraw-Hill Companies, Inc., US

Nathabandu T. K. and Renzo R. (1997), "Statistics, Probability, and Reliability for Civil and Environmental Engineers", The McGraw-Hill Companies, Inc., New York Poulos H.G and Davis E.H (1980), "Pile Foundation Analysis and Design", John Wiley & Sons, Inc., Canada

Roy E. Hunt (1983), "Geotechnical Engineering Investigation Manual", McGraw-Hill Book Company, New York

William P. (1997), "Soil Mechanics; Concept and Applications", Chapman & Hall, London