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ABSTRACT 

 

Recommender system is a sub part of information retrieval. It decreases the 

content searching time, increases the user‟s interest, and provides recommendations 

relevant to user‟s goals or interests. The major drawback of recommender system is 

user-based cold-start problem, which has two causes: new-user zero-rated profile 

recommendations and average-user low-rated profile recommendations. This 

research proposes goal-based filtering approach consisting of two hybrid parts; first 

is content-based filtering with collaborative features to overcome the first cause of 

user-based cold-start problem. The second is collaborative filtering with k-nearest 

neighbor scheme features to improve the second cause of user-based cold-start 

problem. The famous „MovieLens‟ dataset is rich with its 927 entries of user‟s 

profile data, which makes it a choice for experiments on the proposed work. The 

cosine similarity and euclidean distance measurements have been used to compute 

the personalized profile similarities between users profile preferences according to 

their age, gender and occupation. These similarities are helpful to predict the 

recommendations to the zero-rated and low-rated users without using any extra 

information such as ratings, likes or dislikes. The evaluation of experiments has been 

performed using mean precision with result of 83.44% and mean recall with result of 

85.22%. The results demonstrate that percentage of user‟s profile similarity 

measurements is probably effective for web-based system‟s recommendations. 

 

 

 



vi 

 

 

 
 

ABSTRAK 

 

Sistem pencadang adalah sebahagian daripada capaian maklumat semula. Ia 

mengurangkan penggunaan masa untuk mencari sebarang kandungan, meningkatkan 

minat pengguna, dan menyediakan cadangan yang berkenaan dengan tujuan atau 

kepentingan pengguna. Kelemahan utama sistem pencadang adalah  masalah 

pengguna berasaskan cold-start, yang mempunyai dua punca: pengguna baru dengan 

cadangan-cadangan profil zero-rated dan pengguna ditahap sederhana dengan  

cadangan profil low-rated. Kajian ini mencadangkan pendekatan penapisan goal-

based yang terdiri daripada dua bahagian hibrid; pertama adalah penapisan 

kandungan berasaskan dengan ciri-ciri kerjasama untuk mengatasi punca pertama 

masalah pengguna berasaskan cold-start. Kedua adalah penapisan dengan skim 

kerjasama ciri-ciri k-nearest neighbor untuk memperbaiki punca kedua masalah 

pengguna berasaskan cold-start. Set data terkenal iaitu  'MovieLens' yang kaya 

dengan 927 penyertaan daripada data profil pengguna yang membuatkannya menjadi 

satu pilihan bagi eksperimen ke atas kerja yang dicadangkan. Ukuran jarak 

keserupaan kosinus dan ukuran jarak euclid telah digunakan untuk mengira 

persamaan di antara pilihan profil mengikut umur, jantina dan pekerjaan mereka. 

Persamaan-persamaan  ini berguna untuk meramalkan cadangan kepada pengguna-

pengguna zero-rated dan low-rated tanpa menggunakan apa-apa maklumat tambahan 

seperti pengkadaran, suka atau tidak suka. Penilaian keputusan eksperimen telah 

dilakukan dengan menggunakan purata ketepatan dengan hasil 83.44% dan purata 

mengingat kembali sebanyak 85.22%. Keputusan-keputusan menunjukkan bahawa 

peratusan pengukuran persamaan profil pengguna mungkin berkesan untuk  laman 

web berasaskan sistem cadangan ini. 
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CHAPTER 1 

INTRODUCTION 

1.1       Overview 

Knowledge, technology and mutual environments enhancements in contrast 

to modern web-based systems become an important part of daily life for millions of 

users for achieving their required goals, e.g., what the user trying to achieve or what 

the user set out to achieve. Modern web-based systems provide many benefits to 

users, it may increase some difficulties too; the one and major difficulty is large 

content mismanagement by increasing the number of pages (Salmon, 2003). This 

page-to-page running environment discourages the user‟s interests and less helpful 

for retrieving the required item in a particular timeframe. However, the recommender 

system (a central part of information retrieval) could offer an appropriate way to 

overcome the large content mismanagement issue and retrieve the relevant items 

more quickly and easily (Shishehchi et al., 2010; Shishehchi et al., 2011).  

Recommender system is a central part of information retrieval for retrieving 

the relevant information (Ghauth and Abdullah, 2010) that offers more flexibility for 

users to decrease the difficulty of large content management. It helps to decrease the 

item searching time, increase the user‟s interest, and provide the recommendations 

relevant to user‟s goals or interests (P.di Bitonto et al., 2010). A simple and clear 

definition of recommender system is: 

“A Recommendation works as a sub system, known as 

recommendation systems or some time called recommender systems 

RS, which aims to help a user or a group of users in a system to 
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collect required items from a crowded content lists or information 

space (McNee et al., 2006). ” 

The operations of recommender system based on three filtering approaches, 

which are content-based filtering CBF, collaborative filtering CF and hybrid filtering 

HF approaches (Lara, 2004). In content-based filtering CBF, the system recommend 

only those relevant items to users that are similar to the ones they preferred them self 

in the past (Adomavicius and Tuzhilin, 2005). While, the collaborative filtering CF, 

the system recommend those relevant items that other users with similar interest and 

preferences liked in the past (Ghazanfar and Prugel-Bennett, 2010). The hybrid 

filtering HF is a third way to tackle the filtering results (Burke, 2002). The hybrid 

approaches plays a controversial role to tackle the users required goals.  

With respect to traditional research aspects, every filtering approach in hybrid 

filtering has its own limitations. The famous and well-known problem is user-based 

cold-start and identifies with two major causes, which are as follows:  

i)   New-user zero-rated profile recommendations, defined in (Section 1.2.1)  

ii)  Average-user low-rated profile recommendations, defined in (Section 1.2.1)  

In this problem, the user unable to retrieve any or less items from the system, 

if user does not visit any or less items and rate or vote them or the user do not have 

any sufficient past profile preferences, as like or dislike.  

To improve the expertise of recommender system and overcome the above 

causes, this research proposed the goal-based filtering approach that tolerates the 

user goals by measuring users personalized profile preferences “age, gender and 

occupation” similarities with other users personalized profile preferences “age, 

gender and occupation”. With respect to the above two causes of use-based cold-start 

problem, this research validate the users in three categories, that are new-user zero-

rated profiles, average-user low-rated profiles and super-user high-rated profiles. The 

personalized profile similarities between these three category of users are helpful to 
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predict their required items or goals and overcome the above two causes of use-based 

cold-start problem. 

This research work constructed the goal-based filtering approach interwork 

with users personalized profile similarity measurements, instead of meta-keywords; 

predefine predictions or historical informational aspects. The filtering aspects of 

proposed work have been worked with the hybridization of content-based filtering 

with collaborative features to overcome the new-user zero-rated profile 

recommendations issue. Perhaps, the hybridization of collaborative filtering with k-

nearest neighbor scheme features is helpful to improve the average-user low-rated 

profile recommendations.  

1.2       Problem Background 

The growing challenges in the problem domain affect the performance of 

recommender systems; however, one of the major challenge is user-based cold-start, 

which moderated against the user own historical (like or dislike, purchasing, reading, 

etc.) preferences (T. Qiu et al., 2011). The detail of user-based cold-start problem is 

defined as follows: 

1.2.1    User-Based Cold-Start Problem 

The cold-start is a well known in all types of recommender systems (F.Lecue, 

2010). Generally, in this, the system led to none or poor recommendation and 

damaged the resultant filtered content of recommender system (Ghazanfar and 

Prugel-Bennett, 2010). This problem has encompasses by two issues, which are:  

a) New-User Zero-Rated Profile Recommendation Issue 

When the user is new in the system, the system is unable to extract sufficient 

information from the user profile that is required for the starter recommendations (Y. 

Blanco-Fernandez et al., 2008; Y.Blanco-Fernández et al., 2011). In other words, the 
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recommender systems generally works with the users own historical or rated profile 

preferences. Therefore, the new-user in the system do not visit and rate any item, so 

the system does not acclaim the users required goals and unable to filter the starter or 

new recommendations.  

b) Average-User Low-Rated Profile Recommendation Issue 

The existing literature induced that the users, which are not new in the 

system are also facing the forecasting recommendation issues (Ge, 2011; Z. Mi and 

C. Xu, 2012). In other words, it has occurred when the user is not regular in the 

system, or user has not rated and visited much items. In both of cases, the system is 

not able to produce the recommendations, which loses the users interest.  

1.3       Problem Statement 

This study encompasses the main research question of this proposed study is 

as follows: 

“What methods are available to combine recommendation approaches 

or features and which of those methods are suitable for integrating the 

user-based personalized similarities to overcome the issue of new-users 

zero-rated profile recommendations and improve the average-users low-

rated profile recommendations, with the help of super-users high-rated 

profiles?” 

In order to answer this question, the following research points have to be 

answered: 

(i) What methods are exists to combine the recommendation techniques 

and which of these methods are suited for the proposed work? 

(ii) Which dataset have suitable user-based content for profiles similarity 

experimentation, how to validate and normalize it? 
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(iii) How to identify the new-user zero-rated profiles, average-user low-

rated profiles and super-user high-rated profiles? 

(iv) What similarity measurements are useful to measure the personalized 

profile similarities between new-user zero-rated profiles, average-user 

low-rated profiles and super-user high rated profiles? 

(v) How the personalized profile similarity measures are useful to 

overcome the new-user zero-rated profile recommendation and 

improve the average-user low-rated profile recommendation? 

1.4       Objectives 

In order to fulfill the requirements of the research questions, following 

objectives were identified for this research study: 

(i) To study the „MovieLens‟ dataset and performs f-fold cross validation 

for the classification of users profiles as new-users with zero-rated 

profile, average-users with low-rated profile, and super-user with 

high-rated profiles from relevant dataset. 

(ii) To propose goal-based filtering approach that hybridized content-

based filtering with collaborative features to overcome the new-user 

zero-rated profile recommendations and collaborative filtering with k-

nearest neighbor features to improve the average-user low-rated 

profile recommendations. 

(iii) To operate the similarity, cosine and euclidean distance measurements 

have been used to tackle the user-based personalized profile 

similarities between zero-rated users, low-rated users, and high-rated 

users that help to predict the recommendations for new and average 

users. 
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1.5       Aim 

The aim of this proposed research work is to focus the user-based cold-start 

problem through proposed goal-based filtering approach with the help of cosine and 

euclidean distance similarities between new-user zero-rated profiles and average-user 

low-rated profiles and super-user high-rated profiles personalized preferences “age, 

gender, and occupation” to overcome the new-user zero-rated profile 

recommendations and improve the average-user low-rated profile recommendations. 

1.6       Scope 

The scope of this research study has been confined as follows: 

(i) This research focuses on the user-based cold-start problem and its two 

main causes, which are new-user zero-rated profile recommendations 

and average-user low-rated profile recommendations. 

(ii) „MovieLens‟ dataset has been used for experimental setup. 

(iii) The f-fold cross validation has been studied for validating and 

normalizing the dataset that helps to classify the zero-rated profiles as 

new-user, low-rated profiles as average-user and high-rated profiles as 

super-users profiles. 

(iv) The research used content-based filtering with collaborative features 

and collaborative filtering with k-nearest neighbor scheme features to 

fulfill the aspects of proposed goal-based filtering approach. 

(v) The cosine and euclidean distance similarity measurements are being 

used to compute the similarities between new-user, average-user and 

super-user personalized profile preferences “age, gender and 

occupation.” 

(vi) These similarities are helpful to predict the recommendations for end 

user or group of users. 

(vii) Precision and recall has been used to perform evaluation of uses 

personalized profile similarity experimental results. 
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1.7       Significance of Study 

(i) Increase the user‟s interest and decrease the web-based item searching 

time. 

(ii) Overcome the new-user zero-rated profiles recommendations issue 

and improve the average-user low-rated profile recommendations 

issue simultaneously. 

(iii) Improve the recommendation prediction strategy with personalized 

profile similarities between two or group of users to accrue the users 

required goals. 

1.8       Organization of Thesis 

This research thesis consists of six chapters. Chapter 1 defined the 

introduction, problem and their objectives, aim, scope and significance of study. The 

chapter presents the systematic review on the filtering approaches of recommender 

system. Moreover, it also prescribes the land-escape of problem domain. Chapter 3 

defines the landscapes of research methodology of proposed work. The proposed 

goal-based filtering approach, its operational work and detailed description has been 

covered in Chapter 4. Chapter 5 shows the experimental results and discussion of 

research outcome. At last, the conclusion, research contribution, work limitation and 

future work of this research has been mentioned in Chapter 6. 
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