
THREE-TIER DETECTION AND MULTI-LEVEL SYNERGY FOR COASTAL 

MIXED-LAND ZONE CLASSIFICATION 

 

MUHAMAD ASYRAF BIN MOHD POUZI 

 

UNIVERSITI TEKNOLOGI MALAYSIA 



 

 

 

 

 

 

THREE-TIER DETECTION AND MULTI-LEVEL SYNERGY FOR COASTAL 

MIXED-LAND ZONE CLASSIFICATION 

 

 

 

 

 

 

MUHAMAD ASYRAF BIN MOHD POUZI 

 

 

 

 

 

 

A thesis submitted in partial fulfillment of the  

requirements for the award of the degree of 

Master of Science (Computer Science) 

 

 

 

 

 

Faculty of Computing 

Universiti Teknologi Malaysia 

 

 

 

 

 

MAY 2013 



iii 

 

 

 

 

 

 

 

 

 

 

 

All praises to Allah the Almighty for 

the strengths and His blessing in completing this thesis. 

 

Specially dedicated to; 

my beloved parents Mohd Pouzi bin Hamzah and Murni binti Ghani 

my precious siblings Muhamad Afiq and Adlina Najihah 

my most helpful friend Ismaliza binti Ismail



iv 

 

 

 

 

ACKNOWLEDGEMENT 

 

 

 

I would like to express my gratitude to my supervisor, Dr. Muhamad Razib 

bin Othman, my co-supervisor, Dr. Hishammuddin bin Asmuni as well as Dr. 

Rohayanti binti Hassan for their patience, guidance, encouragement, invaluable 

comments, and advice that made this research possible and completed. I would like 

to thank all members of the Laboratory of Computational Intelligence and 

Biotechnology (LCIB) for their continuous support in many aspects of this research.   

 

 

My deepest appreciation also goes to my parents as they were the ones who 

encouraged me to pursue my MSc. My father, who is a lecturer, shared his valuable 

experience in research including the ethics and skills while my mother has been 

continuously giving her greatest support. The strength to withstand the hardships that 

were encountered along this road came from their aspirations that live in me, for it 

will inspire me to achieve more great things in life ahead. With God’s willing. 

 

 

The datasets used in this study are the courtesy of Geographic Information 

System (GIS) solution provider and Malaysian Remote Sensing Agency (ARSM). 

Last but not least, I would like to acknowledge the funding from GATES BIOTECH 

Solution Sdn. Bhd. (GBIT) under GATES Scholars Foundation (GSF) scheme 

(LTR/GSF/2011-06) and MyMaster Scholarship of Ministry of Higher Education 

Malaysia as well as the research opportunity provided by the Faculty of Computing, 

Universiti Teknologi Malaysia. 



 v 

 

ABSTRACT 

 

 

 

Vegetation, urban terrain and water are considered as the problematic 

segments in land use and land cover classifications because of confusion factors. 

These segments are vulnerable to high misclassification level. In addressing these 

problems, several fundamental issues shall be emphasized: ineffective stand-alone 

data classification, high investment for data fusions and the need for high frequency 

of data collection. Thus, this research proposes a classification method consisting of 

two important components: Three-tier Detection (TTD) and Multi-level Synergy 

(MLS) after evaluating LiDAR point cloud, aerial photography, Quickbird and 

Landsat 7 ETM+ images. TTD which is a hierarchical and priority-based data fusion 

method is used to solve the vegetation and urban terrain classification while MLS, 

which is a synergy strategy by the utilization of single data and robust learning 

algorithms is used for water classification. The creation of TTD that has managed to 

outperform the stand-alone data classification made it a worthwhile investment while 

for MLS, the usage of single data is capable of meeting the high data collection 

demand. Both methods started with data processing such as image filtering followed 

by the comparison of several existing techniques for each data (rank) to identify their 

potentials and limitations. Next, multi-level data fusions and multi-level synergy are 

conducted for TTD and MLS, respectively. The dataset employed is Bukit Kanada, 

Sarawak which exemplifies a coastal mixed-land zone. The performance is then 

measured using statistical indices include overall accuracy and Kappa Index of 

Agreement. Both TTD and MLS outperformed recent works such as Normalized 

Digital Surface Model, Edge Detection technique and Support Vector Machine. 

Based on the success rates, TTD is suitable to be applied in planning and 

development sectors, management and detection of land use changes while MLS is 

suitable for creating maps, charts, and also in monitoring national coastline. 
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ABSTRAK 

 

 

 

Cabaran utama dalam pengklasifikasian penggunaan dan penutupan tanah 

adalah kekeliruan yang berlaku pada segmen-segmen yang bermasalah seperti 

tumbuh-tumbuhan, kawasan bandar dan air. Segmen-segmen ini terdedah kepada 

tahap keterlepasan pengklasifikasian yang tinggi. Bagi menangani permasalahan ini, 

beberapa isu asas perlu dititikberatkan iaitu pengklasifikasian data tunggal yang tidak 

berkesan manakala paduan data melibatkan pelaburan yang tinggi serta 

kebergantungan kepada frekuensi pengumpulan data yang tinggi. Oleh yang 

demikian, kajian ini telah memperkenalkan satu kaedah pengklasifikasian yang 

terdiri daripada dua komponen penting iaitu Three-tier Detection (TTD) dan Multi-

level Synergy (MLS) setelah menilai beberapa data. TTD merupakan kaedah paduan 

data yang berasaskan kepada hierarki dan keutamaan yang digunakan untuk 

pengklasifikasian tumbuh-tumbuhan dan kawasan bandar manakala MLS yang 

merupakan strategi sinergi berdasarkan kepada data tunggal dan algoritma-algoritma 

pembelajaran digunakan untuk pengklasifikasian air. Pencapaian TTD yang telah 

berjaya mengatasi pengklasifikasian data tunggal menjadikannya suatu pelaburan 

yang berbaloi manakala MLS yang dioperasikan berdasarkan data tunggal dilihat 

mampu memenuhi kebergantungan kepada frekuensi pengumpulan data yang tinggi. 

Kedua-dua kaedah ini bermula dengan pemprosesan data seperti penapisan imej dan 

diikuti dengan perbandingan beberapa teknik yang sedia ada untuk setiap data bagi 

mengenal pasti potensi dan kelemahannya. Seterusnya, pelbagai peringkat paduan 

data dan sinergi diuji bagi TTD dan MLS. Lokasi kajian ini ialah Bukit Kanada, 

Sarawak yang merupakan zon tanah bercampur di kawasan pantai. Berdasarkan 

indeks-indeks statistik termasuk ketepatan keseluruhan dan Kappa Index of 

Agreement, TTD dan MLS telah berjaya mengatasi kerja-kerja baru seperti 

Normalized Digital Surface Model, teknik Edge Detection dan Support Vector 

Machine. Dengan pencapaian ini, TTD sesuai untuk diaplikasikan dalam sektor 

perancangan dan pembangunan, pengurusan dan pengesanan perubahan penggunaan 

tanah manakala MLS sesuai untuk mewujudkan peta, carta dan juga memantau 

perairan kebangsaan. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Background 

 

 

  In Geographical Remote Sensing (GIS) perspective, Earth can be categorized 

into two categories: (i) Land Use (LU) which describes the human use of land that 

involves management or modification of natural environment or wilderness into built 

environment such as residential and industrial area; and (ii) Land Cover (LC) which 

describes physical materials at the surface of Earth such as vegetation, urban terrain 

and water segments. The main difference between LU and LC is that LU concerns on 

the changes that are made to the Earth’s surface while LC includes the changed area 

and natural area. Among the important aspects related to LU and LC is the 

classification that also depends on the efficiency of data procurement. The traditional 

ways involve physical contact with the objects, high cost, time-consuming and some 

areas are not easy to be reached such as volcanic, landslides and remote areas. These 

limitations have been successfully overcome by the enhanced remote sensing 

technology by using plane, unmanned aerial vehicle and satellite which do not 

involve physical contact, low cost, fast and high reach capabilities. As well as the 

data, the capabilities increase from time to time and each of them carries particular 

advantages in which some are unique. LiDAR point cloud (LPC), aerial photography 

 (AP), Quickbird (QB) and Landsat 7 ETM+ (LDST) images are examples of remote 

sensing data types used for the classification. 
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The classification task takes place in two types of area-of-interests (AOI: see 

Figure 1.1) which are: (i) mixed-land zones (Garcia-Gutierrez et al., 2011); and (ii) 

urban areas (Awrangjeb et al., 2010). A mixed-land zone is an area that is comprised 

of land uses in a variety of ways such as industrial areas, port facilities, roads and 

natural areas in the same space (Garcia-Gutierrez et al., 2011; see Figure 1.2). It 

usually consists of low and medium-sized buildings and large area vegetation 

segments. These characteristics exist in almost all countries in the world. However, 

in a coastal mixed-land zone, seawater is included besides freshwater. Meanwhile, an 

urban area consists mainly of high buildings and smaller vegetation areas. Besides, 

an urban area may consist of more modern and sophisticated structures. Among the 

obvious examples are Petronas Twin Towers and KL Tower in Kuala Lumpur as 

well as Taming Sari Tower in Melaka. The basic criteria used to differentiate these 

two AOIs are building density and total area of vegetation in which a coastal mixed-

land zone commonly has lower building density and larger total area of vegetation 

compared to the urban areas. 

 

 

  

a b 

 

Figure 1.1 Comparisons between a coastal mixed-land zone and urban area; (a) a 

coastal mixed-land zone and (b) urban area. 
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a b 

  

c d 

 

Figure 1.2 Several characteristics of a coastal mixed-land zone; (a) seawater, (b) 

industrial areas, (c) port facilities, and (d) roads. 

 

 

 

1.2 Challenges of Land Use and Land Cover Classification 

 

 

The existence of many types of data with various capabilities accompanied by 

advances in computer field provides wider options in LULC classification in order to 

improve the classification accuracy. These options include Normalized Digital 

Surface Model (nDSM) application presented by Demir et al. (2008), the height 

threshold of nDSM (htnDSM) application by Hermosilla et al. (2011) and the Edge 

Detection (ED) technique by Babykalpana and Thanushkodi (2011). The nDSM, 

htnDSM and ED technique were reported to produce good classification accuracy 

together with certain limitations. This is where the first challenge belongs. Due to the 

experiments demonstrated by the previous researchers that are incomparable from 

each other since many parameters are different such as: (i) dataset; (ii) method; and 
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segment-of-interest (SOI), these inconstancies made the comparison difficult while it 

is crucial to recognize the advantages and disadvantages of each remote sensing data, 

techniques and the proposed methods to provide better solution for particular 

problems. 

 

 

Several works such as by Sohn and Dowman (2007) and Awrangjeb et al. 

(2010) have suggested data fusion as a new option for LULC classification. It 

enables the collection of useful information from different sensors (Campos et al., 

2010) which is reported to outperform stand-alone data classification. A number of 

researchers such as Rottensteiner et al. (2005) and Hyde et al. (2006) have proved 

the potential of data fusions as new alternative in LULC classification. In order to 

consider the data fusion options, the second challenge must be tackled. This 

challenge concerns the data fusion methods used to solve the classification problem 

since current results were not in satisfactory level. As example, the method by 

Campos et al. (2010) which employs data fusion of LPC data with QB data achieved 

Kappa Index of Agreement (KIA) value of 0.78 which is in the range of “Good” 

based on Kappa strength of agreement. The achievement is below the “Very good” 

range. Awrangjeb et al. (2010) fused various products of LPC with QB. Low 

completeness and correctness level in particular test scenes as well as low quality 

level were reported. To date, Pérez-Hoyos et al. (2012) created a synergetic land-

cover map by using four types of data. However, some issues arose such as the 

reproducibility of the method, availability and price of the data. In short, the key of 

tackling the second challenge relies on the handling of the first challenge. 

 

 

 In contrast with vegetation and urban terrain segments, the water segment 

possessed many factors which rapidly affect the condition of this segment such as 

daily human activity, natural phenomena and pollution. Hence, frequent 

classification works are needed to fulfill the purposes of water classification such as 

to monitor the national coastline. Since this task requires high frequency of data 

collection, the investment in preparing the data must be minimized. Such 

circumstance requires forcing good results from a single data which lead to the 

consideration of learning algorithms and water index utilization, where the third 
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challenge stemmed from. Multiple classifier system (MCS) is an advanced approach 

of learning algorithms which has been proven by Du et al. (2012) to outperform 

single classifier while Modified Normalized Difference Water Index (MNDWI) is a 

well-known water index which was explored by Ho et al. (2010). This method is 

capable of classifying water bodies due to the sensitivity of LDST data. However, 

several issues aroused such as the classifiers that will be chosen which affect the 

effectiveness and time consumption of the MCS and the identification of the superior 

method for water classification. 

 

 

 

1.3 Current Methods in Land Use and Land Cover Classification 

 

 

Generally, current methods for LULC classification can be categorized into 

two: stand-alone data and data fusions: 

 

(i) Stand-alone data - utilizes a single dataset for the classification task 

by exploiting the benefits of each data type. For LPC, nDSM 

(Brennan and Webster, 2006; Demir et al., 2008), ED (Babykalpana 

and Thanushkodi , 2011) and LPC with intelligent techniques (Garcia-

Gutierrez et al., 2011). For imagery data, the application of single 

learning algorithm (Foody et al., 2007; Perumal and Bhaskaran, 2010; 

Szuster et al., 2011) while the fusion of the learning algorithms was 

implemented by Du et al. (2012). Lee and Yeh (2009) utilized the 

near-infrared band of QB images by Normalized Difference 

Vegetation Index (NDVI) which is a well-known vegetation index. 

(ii) Data fusions - utilize more than one dataset for the classification task 

whereby many schemes have been observed. Amarsaikhan et al. 

(2010) fused the nDSM of LPC data with Support Vector Machine 

(SVM) application on imagery data. Khoshelham et al. (2010) fused 

the htnDSM with MCS that consists of SVM and Maximum 

Likelihood (ML). Guan et al. (2012) fused Triangulated Irregular 
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Network (TIN) and nDSM with SVM. Elghazali (2011) and Campos 

et al. (2010) fused LPC with QB data. 

 

 

 

1.4 Problem Statement 

 

 

The accuracy of LULC classification is a general problem because LULC 

does not only consist of vegetation, urban terrain and water segments. In such 

confused environment, the method of reducing the misclassification levels by using 

large amount of data has not been adequately investigated. In order to solve this 

problem, various classification schemes have been observed with single data 

application, data fusions and learning algorithms are among the options. However, 

for some purposes, the classification results are highly demanded over a period of 

time such as water classification (the details are presented in Chapter 6). Hence, the 

investment in preparing the data and the dependency on frequent data collection need 

to be addressed. Since the results by different researchers are incomparable due to 

various experimental configurations, therefore, the classification problems to be 

solved in this study can be described as follows: 

 

 

“Given a number of remote sensing data with particular capabilities and 

exploitation methods with their barely known advantages and disadvantages, 

the main problem is to produce an accurate classification level by reducing 

the misclassification levels namely False Negative (FN) and False Positive 

(FP) caused by the presence of confusion factors in the study area in order to 

achieve higher overall accuracy (Oac) and Kappa Index of Agreement (KIA). 

While current data fusions seem to be insufficiently effective, particular 

purposes urge to force good results from a single data. The investment to 

prepare the data and the dependency on frequent data collection are taken into 

account.”  
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Based on the above challenges, some factors need to be addressed by the 

possible solution. The first factor is related to insufficient knowledge on the 

advantages and disadvantages of particular methods in classifying a coastal mixed-

land zone caused by the different experiment settings. Thus, the results are 

incomparable and the actual potential of the methods remains questionable. Thus, 

this study aims to investigate a number of selected methods to recognize their 

capabilities in terms of accuracy level and identify the contributors of the 

misclassifications.  

 

 

The second factor is the unsatisfactory performance of current data fusion 

techniques which may lead to waste of investment. This condition is mainly caused 

by the inability of the data fusions to fully utilize the potential of the data in order to 

manage the misclassification factors that exist in a coastal mixed-land zone.  

Realising these facts, after the advantages and disadvantages of the data and methods 

have been identified, this study aims to properly utilize them in order to reduce the 

FN and FP levels by considering several options of data fusion techniques. The third 

factor is the urge to reduce the investment in preparing the data based on the demand 

of high frequency of data collection. Forcing good results from a single data lead to 

the use of learning algorithms which is among the considerable options. While 

current MCS is at unsatisfactory level and consists of too many classifiers, this study 

aims to produce a method based on MCS by decreasing the number of classifiers 

involved, which is able to reduce time consumption as well as producing good 

results. 

 

 

 

1.5 Objectives of the Study 

 

 

The goal of this study is to develop a method that can produce high 

classification levels for vegetation, urban terrain and water segments in the presence 

of various confusion factors. This can be objectified into: 
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(i) To perform a comparative study which investigates the potential of 

each selected data and method in terms of classifying vegetation, 

urban terrain and water segments in coastal mixed-land zone. 

(ii) To develop a method that utilizes the capabilities of the data for 

vegetation and urban terrain which is able to manage the 

misclassification factors that exist in coastal-mixed land zone. 

(iii) To establish a method based on MCS that is able to separate various 

water types in a coastal mixed-land zone from other segments as well 

as reducing the number of classifier combinations. 

 

 

 

1.6 Scope and Significance of the Study 

 

 

In this study, the remote sensing data used are LPC, AP, QB and LDST 

images obtained from GIS solution provider and Malaysian Remote Sensing Agency 

(ARSM: http://www.remotesensing.gov.my/). The proposed method consists of two 

components: Three-tier Detection (TTD) and Multi-level Synergy (MLS). TTD is 

used to solve the issues of vegetation and urban terrain classification while MLS is 

for water classification. The proposed method is conducted in a coastal mixed-land 

zone exemplified by Bukit Kanada in Sarawak. The performance is then measured 

using reliable statistical indices which are completeness (Cm), correctness (Cr), 

omission error (Oe), commission error (Ce), branching factor (Bf), miss factor (Mf), 

quality (Q), Oac, KIA, and McNemar’s test. The scope of this study is simplified in 

Figure 1.3. 

 

 

The significance of this study can be branched according to the SOI: (i) 

vegetation and urban terrain; and (ii) water. For vegetation and urban terrain, the 

proposed method can be served in management, planning and development sectors 

such as estate, oil palm plantations, city and housing. In other aspects, it can also be 

used for detection of land use changes such as soil erosion and deforestation and 

natural disaster management such as flood. The end results of water classification are 



9 

 

 

  

LiDAR point cloud 

Aerial photography 

Quickbird images 

Landsat 7 ETM+ images* 

 

Bukit Kanada in Sarawak 

   

   

Three-tier 

Detection (TTD) 

 Completeness 

Correctness 

Multi-level 

Synergy (MLS) 

 Omission error 

Commission error 

  Branching factor 

  Miss factor 

  Quality 

  Overall accuracy 

  Kappa Index of Agreement 

  McNemar’s test* 
   

 

Figure 1.3 Scope of the study. Note that “*” indicates the involvement in water 

classification only. 

 

 

also substantial. Other than mapping the river, lake and reservoirs, the mapping of 

coastal area is very important for many countries to define and monitor large national 

coastline, create maps and charts, and monitor environmental change. Nautical charts 

which are  among the coastal mapping products are fundamental tools to mariners in 

planning voyages and navigating ships using the shortest, safest, and the most 

economical routes. Besides, coastal mapping is performed for coastal change 

assessment which is to determine the changing rate of the coast, which can help with 

future planning. It is conducted by measuring the differences in the past and present 

shoreline locations. The ‘before’ and ‘after’ comparison is one way of how the 

scientists determine shoreline change. 

 

 

 

 

 

 

Data 

Proposed 

method 

Evaluation 

methods 

Scope of 

the Study 

Area-of-interest 



10 

 

1.7 Organization of the Thesis 

 

 

This thesis is organized into seven chapters. A brief description on the 

content of each chapter is given below: 

 

(i) Chapter 1 defines the challenges, problems, current methods, 

objectives, scope and significance of the study. 

(ii) Chapter 2 reviews the main subjects of interest which are coastal 

mixed-land zone classification, remote sensing data, data fusions and 

the application of remote sensing data with learning algorithm(s). 

(iii) Chapter 3 provides the design of the computational method that 

supports the objectives of the study. This includes research framework, 

data sources, instrumentation and analysis of results.  

(iv) Chapter 4 presents the comparative study of stand-alone data 

application whereby several existing techniques were evaluated using 

several statistical indices. The objectives are to produce comparable 

results between the techniques and identify the contributors of FN and 

FP. 

(v) Chapter 5 describes the proposed TTD which is the data fusions used to 

reduce the FN and FP levels for vegetation and urban terrain 

classification in coastal mixed-land zone. 

(vi) Chapter 6 describes another component of the proposed method namely 

MLS. MLS synergizes single remote sensing data with the fusions of 

learning algorithms used to solve the issues of water classification. 

MLS fulfils the requirements of high frequency of data collection. 

(vii) Chapter 7 draws general conclusions of the accomplished results and 

presents the contributions of the study as well as suggests several ideas 

for related future works. 
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