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ABSTRACT 

 

 

 

 

The ability of Schrödinger equation in representing the energies and wave 

function of the molecular system has attracted many scientists to find the best 

solution for it.  Due to the restriction of this equation that can only be solved 

analytically for the simple molecular models; numerous of numerical methods were 

introduced to solve it.  The Fourier grid Hamiltonian (FGH) method introduced by 

Marston and Balint-Kurti in 1989 solved the one-dimensional time independent 

Schrödinger equation for H2 molecule by using the plane wave basis set and 

coupling with the Fast Fourier Transform (FFT) technique to reduce the 

computational time. In this study, we implement the Meshless Element Free Galerkin 

(MEFG) method to solve the same problem. The localized basis sets adopted in this 

method and the compactness properties of the weight function lead us to generate a 

sparse Hamiltonian matrix in finding the eigenvalues and eigenfunctions. The aim of 

this study is to develop a new numerical approach to solve the one-dimensional time 

independent Schrödinger equation and as a preliminary research work for us to 

investigating into the computational quantum mechanics studies.  
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ABSTRAK 

 

 

 

 

Keupayaan persamaan Schrödinger untuk mencari tenaga elektron dan 

persamaan gelombang system molekul telah menarik perhatian pakar-pakar sains 

untuk mencari penyelesaian yang optima untuk persamaan ini.  Oleh kerana 

persamaan ini hanya boleh diselesaikan secara analitik untuk model molekul yang 

sederhana, justeru itu banyak jenis kaedah berangka telah diperkenalkan.  Kaedah 

Fourier grid Hamiltonian (FGH) yang diperkenalkan oleh Marston dan Balint-Kurti 

pada tahun 1989 berjaya menyelesaikan persamaan satu dimensi Schrödinger yang 

tak bersandar kepada masa untuk molekul Hidrogen dengan menggunakan set asas 

gelombang satah dan menggandingkan teknik Fast Fourier Transform (FFT) untuk 

mengurangkan masa pengiraan.  Dalam kajian ini, kita telah menggunakan kaedah 

Meshless Element Free Galerkin (MEFG) untuk menyelesaikan masalah yang sama.  

Set asas setempat yang digunakan dalam kaedah ini serta sifat-sifat kepadatan fungsi 

pemberat membolehkan kita menjanakan matriks Hamilton yang jarang untuk 

mencari nilai-nilai dan fungsi-fungsi eigen.  Tujuan kajian ini adalah untuk 

memperkenalkan satu kaedah berangka baru dalam menyelesaikan persamaan 

Schrödinger tersebut dan sebagai satu permulaan dalam kajian pengiraan mekanik 

kuantum. 
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CHAPTER 1 

 
 
 
 

INTRODUCTION 

 
 
 
 
1.1 An Introduction to Quantum Mechanics 

 
 

Quantum mechanics is one of the most common models that are used in 

molecular modeling.  The chemical reaction is due to the motion of electrons within 

reacting molecules where the bonds are broken and formed.  Quantum mechanical 

methods able to represent the electrons in calculation and enables us to derive its 

properties which depend on the electronic distribution.  This is important for ones to 

mimic the behavior of molecules and molecular systems. 

 
 

In early stage, quantum mechanical methods were restricted to atomic, 

diatomic or highly symmetrical systems which could be solved by hand.  However, 

with the rapid development and research blooming all these years to invariably 

associate this technique with the computer technology, we are now able to perform 

calculations on real molecular systems that required a lot of complicated 

calculations, Leach (2001).  

 
 
 
 
1.2 Schrödinger Equation as a Gateway to Quantum Mechanical Studies 

 
 

Understanding and handling of Schrödinger equation is essential for ones to 

access quantum mechanics studies.  The full, time-dependent form of this equation is 
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�−
ℏ2

2𝑚
∇2 +  𝑉�Ψ(𝐫, 𝑡) = iℏ

𝜕Ψ(𝐫, 𝑡)
𝜕𝑡

                             (1.1) 

This equation represents a single particle of mass m moving through a space (given 

by r = xi + yj + zk in 3D) and time 𝑡 under the influence of an external field 𝑉 

(which is often refer to potential).  The universal constant, ℏ is given as follow where 

ℎ is the Planck’s constant. 

ℏ =
ℎ

2𝜋
                                                                 (1.2) 

and                                                     i = √−1 

 
 

The wave function Ψ(𝐫, 𝑡)of position and time is also known as state function 

which describes the physical condition or motion of a particle.  When the external 

potential 𝑉 is independent of time then we can construct a solution to the time 

dependent Schrödinger equation of the form Ψ(𝐫, 𝑡) = 𝜓(𝐫)𝑇(𝑡), which is the 

technique of separation of variables.
 

 
 

It is more common for us to consider that the potential 𝑉 is independent of 

time, which enables us to derive the time-independent Schrödinger equation. 

�−
ℏ2

2𝑚
∇2 +  𝑉(𝐫)�𝜓(𝐫) = 𝐸𝜓(𝐫)                                                  (1.3) 

Here, E is the energy of the particle and ∇2= 𝜕2 𝜕𝑥2⁄  in one dimensional.  The left-

hand side of Equation (1.3) is usually written as ℋ�𝜓, where ℋ�  is the Hamiltonian 

operator: 

ℋ� = −
ℏ2

2𝑚
∇2 +  𝑉(𝐫)                                                           (1.4) 

This reduces the one-dimensional Schrödinger equation to 

ℋ�𝜓(𝑥, 𝑡 = 0) = 𝐸𝜓(𝑥, 𝑡 = 0)                                                (1.5) 

and it is known as the partial differential eigenvalue equations where the 

Hamiltonian operator acts on the eigenfunction and returns the function multiplied by 

a scalar (the eigenvalue).  In this equation, 𝜓(𝑥, 𝑡 = 0) is the eigenfunction and E the 

eigenvalue and it is necessary for us to find the values of them in order to solve the 

Schrödinger equation.  The Schrödinger equation is a second-order differential 
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equation as it involves the second derivative of 𝜓(𝑥, 𝑡 = 0) and a simple example is 

shown below. 

𝑑2𝑦
𝑑𝑥2

= 𝑟𝑦                                                               (1.6) 

The solution of Equation (1.6) is in the form of  𝑦 = 𝐴1 cos 𝑘𝑎𝑥 + 𝐴2 sin 𝑘𝑎𝑥 , 

where 𝐴1, 𝐴2 and 𝑘𝑎 are constants. 

 
 
 
 
1.3 Problem Background 

 
 

In quantum mechanics, it is impossible for us to perform measurements on 

the atomic and subatomic systems without perturbs it.  The act of measurement 

induces non negligible disturbances on the system.  For example, consider an 

experiment that measures the position of a hydrogenic electron.  The electron need to 

be bombarded with an electromagnetic radiation (photons) of energies higher than  

ℎ𝑓 = ℎ
𝑐
𝜆𝑒

= ℎ
3 × 108

10−10
∼ 104 eV ;   

ℎ = Planck constant,𝑓 = frequency, 𝑐 = speed of light, 𝜆𝑒 = wave length  

  
When such photons strike the electron, not only the system will be perturbed but also 

the electrons can be completely knocked off from its orbit; recall that the ionization 

energy of the hydrogen atom is just 13.5eV.  Thus, the mere act of measuring the 

position of the electron disturbs it substantially. 

 
 

In theory, we can represent the position of electrons by a wavefunction and 

denotes the measuring device by an operator.  The abstract kets �|𝜓〉, like 

wavefunctions, are elements of Hilbert space and therefore they are often used to 

represent the system completely in quantum mechanics.  Before measuring an 

observable A, a system in the state �|𝜓〉 can be represented by a linear superposition 

of eigenstates �|𝜓𝑖〉, 𝑖 = 1, 2, … ,𝑛 of the corresponding operator 𝐴̂.  After carrying out 

the measurement, the system will be in one of the eigenstates of the operator, and the 

result obtained is the eigenvalue 𝑎𝑖, Zettili (2009): 
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�|𝜓〉 = ��|𝜓𝑖〉
𝑖

⟨𝜓𝑖|𝜓⟩ = �𝑎𝑖
𝑖

�|𝜓𝑖〉                                           (1.7) 

 
 

However, only a few of Schrödinger equations have simple solutions and can 

be solved exactly.  These cases are classified as “exactly solvable” problems.  A 

mixture of well-tested analytic and numerical methods is then selected to solve the 

Schrödinger equation based on the desired degree of accuracy.  Nevertheless, some 

significance errors might be truncated in the process of simplification or in the 

chosen numerical method.  Hence, we are left to our own devices opting for a 

numerically and physically acceptable solution.  

 
 

Expansion of the wavefunctions in basis sets has been well recognized 

throughout many years.  Basis set is couple of linear combinations of simpler, 

linearly independent, and mutually orthogonal functions that allow us to generate any 

other function belonging to that wavefunction spaces.  Theoretically, such sets must 

be infinite in size; in practice these are truncated due to the limitations in 

computational.  

 
 

This irreconcilable conflict has brought up the curiosity in inventing the 

“best” basis sets.  Although these basis sets are distinctive among each other, 

however they are fulfilling the completeness requirements and emphasizing salient 

features of the wavefunctions to be computed.  Some successful examples of basis 

sets are the Gaussian home base functions in solid helium, harmonic oscillator 

functions for nuclei, Slater functions in atoms and molecules.  However, 

considerable criticism can be leveled against the mathematical behavior of most basis 

functions, Leach (2001). 

 
 

In year 1989, Fourier Grid Hamiltonian (FGH) method which implemented 

Fast Fourier transform (FFT) technique was introduced by C.C. Marston and G.G. 

Balint-Kurti to solve the bound state eigenvalues and eigenfunctions of the 

Schrödinger equation numerically.  In order to coupling the Fast Fourier Transform 

tool, the common basis set to be used was plane wave basis set.  However, it is well 
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known that plane wave basis set has convergence problem and required special 

techniques such as FFT to achieve faster convergence.   

 
 
 
 
1.4 Statement of the Problem 

 
 

In this research, we are using the Meshless Element Free Galerkin (MEFG) 

method which associates with the localized basis set as an alternative approach to 

calculate the bound state eigenvalues and eigenfunctions of the Schrödinger 

equation.  This localized basis set is in the form of polynomial functions and 

represents the wavefunctions in real space.  Therefore, we do not require the complex 

transformation between real space (coordinate representation) and reciprocal space 

(momentum representation) by using the Fourier transform technique.  

 
 
 The Schrödinger equation mentioned above can be written in many forms.  In 

this research work, the one-dimensional time independent Schrödinger equation 

defines on a domain 𝑅𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑅𝑚𝑎𝑥 that we are solving has the final form of 

�−
ℏ2

2𝑚
𝜕2

𝜕𝑥2
+ 𝑉(𝑥)�𝜓(𝑥) = 𝐸𝜓(𝑥) 

and subjects to the boundary conditions 

𝜓(𝑅𝑚𝑖𝑛) = 0 

𝜓(𝑅𝑚𝑎𝑥) = 0 

 
 
 
 
1.5 Simulation Using C Programming Language 

 
 

A program to solve the eigenvalues and eigenfunctions of the Schrödinger 

equation numerically by the MEFG method was developed by using the C 

Programming language. 
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1.6 Objectives of Study 

 

The objective of the study is to understand the current quantum mechanical 

methods that can be used to solve the one dimensional Schrödinger equation for 

atoms with more than one electron or molecules such as:  

(i) To solve bound state eigenvalue problem of a Morse potential for H2 

using FGH method. 

(ii) To solve the same problem using the MEFG method which using 

localized basis set. 

 
 
 
 
1.7 Scope of Study 

 
 

This research will focus on solving the one dimensional eigen system in the 

Schrödinger equations for H2 molecule.  The Fourier grid Hamiltonian (FGH) 

method that uses plane wave basis set and Fast Fourier Transform (FFT) as a tool to 

speed up the calculation is studied and the same problem is then solved by using the 

Meshless Element Free Galerkin (MEFG) method that associates with the localized 

basis set and produce a sparse matrix in the final eigen system. 

 
 

In order to justify whether the selection for using MEFG method is 

appropriate, the final result can be compared with the results obtained by the FGH 

method and also the analytical approach. 

 
 
 
 
1.8 Significance of Study 

 
 

This study is a preliminary research work for us to investigating into the 

computational quantum mechanics studies.  The model using localized basis set aims 

to simplify the eigensystem which might save significant steps in calculation or 

produce a set of better results. 
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1.9 Thesis Organization 

 
 

This report consists of five chapters.  Chapter 1 contains the introduction of 

the quantum mechanics, brief introduction to the Schrödinger equation as a gateway 

to understand the quantum mechanical studies, problem statement, program 

development, objectives, scope of study, significance of study and also the thesis 

organization.  

 
 

Chapter 2 reviews the background of Schrödinger equation and some 

numerical methods used by some researchers in solving this problem.  In particular, 

the Fourier grid Hamiltonian method which couplings with the Fast Fourier 

transform technique is discussed in details. 

 
 

Chapter 3 explains the difference between plane wave and localized basis set 

methods.   The Meshless Element Free Galerkin method is introduced as an 

alternative approach to solve the one-dimensional time independent Schrödinger 

equation. 

 
 

Chapter 4 presents a case study in solving one-dimensional time independent 

Schrödinger equation for the H2 molecule.  Our results are compared with the one 

obtained from FGH method and also the analytical results.  Some discussion on the 

comparison of the results will also be discussed in this chapter.  

  
 

Lastly, Chapter 5 gives the conclusion of the case study and overall 

conclusion for this thesis.  Recommendation is also given to improve this method.    
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