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ABSTRACT 

 

 

 

Training neural networks is a great significance of a difficult task in the field 

of supervised learning because; its performance depends on underlying training 

algorithm as well as the achievement of the training process. In this study, three 

training algorithms  namely Back-Propagation algorithm, Harmony Search 

Algorithm (HSA) and hybrid BP and HSA called BPHSA are employed for the 

supervised training of MLP feed  forward type of NNs  by giving special attention to 

hybrid BPHSA.  A suitable structure for data representation of NNs is implemented 

to BPHSA, HSA and BP. The proposed model is empirically tested and verified by 

using five benchmark classification problems namely Iris, Glass, Cancer, Wine and 

thyroid datasets on training NNs. The MSE, training time, classification accuracy of 

hybrid BPHSA are compared with the standard BP and meta-heuristic HSA. The 

experiments showed that proposed model (BPHSA) has better results in terms of 

convergence error and classification accuracy compared to BP and HSA and this 

makes the BPHSA look as promising algorithm for neural network training. 
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ABSTRAK 

 

 

 

Latihan rangkaian neural (RN) adalah satu tugas yang sukar dan penting di 

dalam bidang pembelajaran diselia. Prestasi NN bergantung kepada algoritma latihan 

serta pencapaian proses latihan. Satu algoritma baru telah dibangunkan di dalam 

penyelidikan ini  untuk memperbaiki penumpuan ralat di dalam algoritma 

pembelajaran Rambatan Balik (RB) dengan memperbaiki nilai pemberat neuron 

menggunakan algoritma Gelintaran Harmoni (GH). Algorithm hibrid ini dikenali 

sebagai RBGH.  Satu siri eksperimen dilaksana  untuk menguji, menentusahkan dan 

mengukur prestasi algoritma yang dibangunkan dengan algoritma piawai Rambatan 

Balik dan Gelintaran Harmoni. Ketiga-tiga algoritma ini digunakan untuk 

menyelesaikan masalah pengkelasan  di dalam pembelajaran terselia rangkaian 

neural multiaras suapan hadapan. Set data pengkelasan  yang di gunakan di dalam 

eksperimen ini terdiri daripada set data Iris, Glass, Cancer, Wain dan tiroid. Stuktur 

rangkaian neural yang bersesuaian dibangunkan  untuk setiap set data. Nilai min ralat 

kuasa dua (MSE), masa latihan, kejituan pengkelasan yang dihasilkan oleh alogritma 

hibrid RBGH dibandingkan dengan nilai MSE yang dihasilkan oleh algoritma piawai 

BP dan HSA. Hasil eksperimen menunjukkan nilai penumpuan ralat, kejituan 

pengkelasan yang dihasilkan oleh RBGH lebih baik berbanding RB dan GH. Hasil 

kajian ini menunjukkan  algoritma hibrid RBGH mampu meningkatkan prestasi 

latihan rangkaian neural. 
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CHAPTER 1  

 

 

 

OVERVIEW 

 

 

 

1.1 Introduction  

 

 

Artificial Neural Networks (ANNs) also known as Neural Networks are 

computational models based on the human brain microstructure which consists of 

billions of neurons which act as processors. NNs have been widely applied to solve a 

large number of complex problems (Neruda, 2007) including prediction of future 

events, classification, noise filtering, and pattern recognition (Narayan et al., 1996).  

 

 

A single - layer network is one of the easiest and simplest form of feed 

forward NNs.  This architecture consists of input and output layers and can only 

classify linearly separable data (Noriega, 2005).  The training method used for this 

architecture is known as a perceptron learning rule. The weight and biases for this 

perceptron are trained to generate a target vector properly.   

 

 

A Multi-Layer Perceptron (MLP) is another form of feed forward NN where 

one or more additional layer called hidden layer is inserted between the existing 

input and output layers.   Besides the ability to distinguish between linearly separable 

data, MLP could also be used to classify the nonlinear separable data (Sunila and 

Nirmal, 2011). 
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Learning is the process of training the NN before it can be used to solve a 

problem.  Generally during this process, a weight is initially given at random to 

every neuron. The weight is then modified according to algorithm used to achieve 

the correct results.  A training dataset is presented to its input to match specific 

output data or determine the correct outputs after being well trained and tested with 

similar related data. This process lasts until the desired or a near optimal result 

(output) is achieved (Kattan et al., 2010). Learning algorithm for NNs can be divided 

into three approaches namely: supervised learning, unsupervised learning and 

reinforced learning.  

 

 

NN learns from the provided input and output in supervised learning (SL) 

approach. The network learns through processing the input and compares the resulted 

output with the desired output. The error between the output and the desired output is 

propagated and the weight of the network is continuously adjusted until it reaches the 

optimal or near optimal error (certain optimal criteria is given). Stochastic and error 

correction gradient descent are the most essential for weight training algorithms in 

supervised learning. In stochastic,  input weights are adjusted probabilistically while 

in error correction gradient-descent, errors are minimized in terms of weights and the 

activation function of the network. Supervised learning is appropriate when the class 

memberships of training data are known (Kulluk et al., 2012). 

 

 

Unsupervised learning is the scenario where there is no controller (teacher) 

that presents the network’s expected output. The system itself learns by familiarizing 

and learning the structural features in the output pattern. This learning method is 

appropriate for the cases that the class memberships of training data are not known, 

or there is no desired output or the output cannot be predicted (Htike and Khalifa, 

2010).  

 

 

Reinforced learning is not as popular as its counterparts supervised learning 

and unsupervised learning. It is output based technique where there is a watcher 

(controller or teacher) which only controls the designated output whether is correct 

or not. On the other hand, the desired output is not presented therefore; the 

information provided to the network supports it in its learning process. So, a reward 
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is given to the right answer and a penalty for a wrong answer (da Motta Salles and 

Anderson, 2008). However, the training of NN is basically succeeded in two ways: 

(1) adjusting the connection weights when the issue is predefined of ANN structure 

such as the number of neurons and their connections, the number of hidden layers 

and finally (2) the activation function parameters (Zamani and Sadeghian, 2010). 

 

 

One of the most widely used algorithms for supervised training is the Back-

Propagation (BP). It  produces instances of the inputs and outputs to compute the 

network’s output and reduce the mean square error (MSE) between the actual output 

and the required output by adjusting weights accordingly (Kulluk et al., 2012). 

However, the BP algorithm experiences some drawbacks: (1) its learning and 

adoption are very slow in finding for the global minimum of the search space and (2) 

always is trapped at local minimum and (3) it requires a differentiable neuron 

transfer function (Castro and Von Zuben, 2011; Er and Liu, 2009; Kattan et al., 

2010; Kulluk et al., 2012). 

 

 

Development of learning algorithm for MLP has continuously attracted the 

focus of the researchers. As a result,   many algorithms have been used by the 

researchers to train the MLP. The algorithms for training MLP include those inspired 

from biological processes like evolutionary (EA) as well as non-biological processes 

based algorithms such as: HSA.    

 

 

EA is member of meta-heuristic algorithms and it has adopted to train feed 

forward NN (Correa and Gonzalez, 2011; El-Henawy et al., 2010; Gao, 2008; 

Malllikarjuna et al., 2011). Genetic Algorithm which can be considered within EA 

category has been used by (Correa and Gonzalez, 2011; Er and Liu, 2009; Ramos-

Pollán et al., 2011; Zhu and Wang, 2010) to train NN.  Meanwhile, swarm 

intelligence-based algorithm called Particle Swarm Optimization has been applied to 

train NN by (Abdull Hamed et al., 2012; Carvalho and Ludermir, 2007; Correa and 

Gonzalez, 2011; Zamani and Sadeghian, 2010) and Ant Colony (Gao, 2008; 

Yoshikawa and Otani, 2010). 
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Harmony Search algorithm (HSA) which is inspired from musician 

improvisation has also been used to train ANNs (Kattan et al., 2010; Kulluk et al., 

2012; Tavakoli et al., 2012). HSA has outperformed than BP, GA and PSO in terms 

of convergence rate speed, accuracy and towards reaching the global optimal 

solution (Geem et al., 2007; Kattan et al., 2010; Kulluk et al., 2012; Soltani et al., 

2011; Tavakoli et al., 2012). HSA has been revealed in various applications 

including engineering optimization, water distribution networks, vehicle routing and 

many more (Fetanat et al., 2011; Yang, 2009). In this study, HSA was selected to 

adjust the weights and biases of BP-MLP whenever BP fails.   

 

 

 

1.2 Problem Background 

 

 

Traditionally training process of MLP NNs is divided into two phases. The 

first phase involves with determining the structure of hidden layers, hidden neurons 

and connection scheme. While the second phase, is involved with adjustment of the 

connection weights. The adjustment of connection weights is used by Back-

Propagation (BP) algorithm (Malllikarjuna et al., 2011; Teixeira et al., 2008). BP 

algorithm was used to solve many real world problems using the concept of 

Multilayer Perceptron. Although many efforts had been done to speed up the BP’s 

convergence rate still its convergence rate quite slows and always is trapped in local 

minima (Malllikarjuna et al., 2011). 

 

 

Therefore, the researchers such as (Abdull Hamed et al., 2012; Carvalho and 

Ludermir, 2007; Zamani and Sadeghian, 2010) proposed a PSO technique to 

overcome the learning problem of MLP back-propagation. Some others such as (El-

Henawy et al., 2010; Zanchettin et al., 2011) while (Er and Liu, 2009) used GA to 

train MLP. The author (Gao, 2008) employed ACO for MLP training. Further more, 

researchers such as (Kattan et al., 2010; Kulluk et al., 2012; Tavakoli et al., 2012; 

Zinati and Razfar, 2012) proposed to train the MLP using HSA to optimize the 

weights and biases; since weight adjustments and correctly determining the ANN 
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parameters are leading successful learning achievements to gain optimum result 

(Khorani et al., 2011). 

 

 

GA was used to initialize the weights of BP in order to train MLP feed 

forward NN and avoid both local minimum and low convergence rate of BP. GA has 

ability to escape the local minimum of BP and can successfully increase the 

possibility of finding a global solution instead of local one. Especially when the 

search space is large and has no obvious global minimum, at this time GA provides 

the best solution where most of other techniques fail (El-Henawy et al., 2010; Yang, 

2009). Its power to seek many local minimums made it so popular despite the major 

disadvantage of GA are that it demands more time during mutation (number of 

iterations) in the search process to the best solution as compared to PSO (El-Henawy 

et al., 2010). Hence, other evolutionary algorithms have been given to consideration 

such as PSO 

 

 

PSO was developed by Kennedy and Elberhart in 1995 (Sedighizadeh and 

Masehian, 2009).  Kole and Halder (2010) have applied PSO to train MLP and found 

that it has performed better than GA. PSO performance in traing of MLP is also 

compared  to Harmony Search Algorith (HSA)  (Zamani and Sadeghian, 2010).  PSO  

consumes much more time calling the fitness function by the number of its 

population size while HSA calls the fitness function only once in each iteration 

(Zamani and Sadeghian, 2010). Moreover,  PSO is found trapped into a local 

minimum  due to improper values assigned to parameters (Li et al., 2009). 

 

 

 Ant Colony Optimization (ACO) is an optimization algorithm that  derived 

from the behavior of ant colonies and proposed by Italy scholar M. Dorigo in 1990’s 

and was intended to solve complicated combinatorial optimization problems (Gao, 

2008). ACO generates simple agents in iterative process which repeatedly constructs 

candidate solutions those guided by heuristic information on given problem scenario 

along with a shared memory that contains previous knowledge collected by the ants 

in earlier repetitions; it has been applied to wide range of complex computational 

problems (Al Salami, 2009). Regarding the experomantal results done by Gao (2008) 

discovered that ACO can improve the NN (MLP) learning with efficiency and also 
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tested that it is better than BP network of MLP however it was verified by typical 

XOR problem and it has been reported that XOR has no local minima (Kattan et al., 

2010). 

 

 

Though HSA is a relatively new meta-heuristic algorithm, its effectiveness 

and advantages have been demonstrated in various applications (Ayachi et al., 2013). 

Since its first appearance in 2001, it has been applied to solve many optimization 

problems mostly in engineering and industry, and the last ten years HSA has 

observed in applying many IT related applications such as robotics, web page 

clustering and classification problems. The possibility of combining harmony search 

with other algorithms such as Particle Swarm Optimization (PSO) has also been 

investigated (Soltani et al., 2011). HSA is very successful in a wide variety of 

optimization problems. It also presents several advantages with respect to 

conventional optimization techniques. HSA does not require initial values for the 

decision variables and it imposes fewer mathematical requirements (Aungkulanon et 

al., 2011). Furthermore, HSA is faster than PSO and it has a significant convergence 

rate to reach the optimal solution (Soltani et al., 2011). HSA has been used to 

optimize feed forward MLPNN (Kattan et al., 2010; Kulluk et al., 2012; Tavakoli et 

al., 2012; Zinati and Razfar, 2012). The experiments conducted by aforementioned 

researchers demonstrated that the performance of HSA is a good in terms of 

accuracy, speed (fast) and optimality besides, its ability to escape from local 

minimum. 

 

 

According to the studies  conducted by (Lu et al., 2000; Shi et al., 2009; Sun 

et al., 2011; Wang et al., 2008; Zhang et al., 2007)  and (Shayeghi et al., 2010), BP 

has been combined with other evolutionary algorithms such as GA and PSO. The 

hybridizing models have shown achievements in the learning process of MLP BP 

aiming to avoid the BP’s problem of getting into local minimum and slow 

convergence rate to perform better and increase the accuracy of the classifier. 

Therefore, there is a need for an enhanced model to enhance the convergence rate 

and avoid local minima of BP, since BP has the local search ability and HSA has 

global search ability, we combine their advantages and eradicate the disadvantages of 

both techniques. 
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In this study, a hybrid BP and HSA is developed to optimize and train the 

MLPNN to produce better performance. HSA is used to initialize weights and bias of 

MLP when BP failed. This is done for the cause of BP's ineffective attempts after the 

initialized weights are far from a good solution or near to poor local optimum which 

will take a lot of time to train since many iteration steps are required that cause the 

network not to converge to a satisfactory solution in the end.  If the BP is not 

approaching the training goal or surely can be trapped in local minima the HSA will 

take the weight and bias adjustment using early stopping mechanism named “steady 

state’ in order to prevent the network being trapped into local minima or less 

accurate results. 

 

 

 

1.3 Problem Statement 

 

 

The MLP learning is influenced by many factors including the local 

minimum, learning rate, minimum error; number of input, hidden and output neurons 

as well as the activation function used. These factors can affect the convergence 

efficiency of MLP learning. Several meta-heuristic algorithms such as GA, PSO, 

ACO and HSA had been used by the researchers to determine parameters of MLP 

that aim for learning improvement. 

 

 

In this study, a hybrid Harmony Search Algorithm and Back-Propagation 

Algorithm is employed to enhance the MLP learning. The performance of hybrid 

BPHSA-MLP is assessed in terms of speed convergence rate and avoiding local 

minima. HSA is a good at identifying the high performance regions of the solution 

space at a reasonable time. Therefore; this study will walk around the significance of 

implementing hybrid BP and HSA. 

 

The research main question can be stated as: 
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How can the hybrid BPHSA-MLP escape the local minimum and slow convergence 

rate of BP-MLP to enhance the MLP learning? 

 

The research sub questions are stated below: 

 

1) How BPHSA can affect the MLP learning rate? 

2) How can BPHSA avoid the BP’s problem of local minimum and reach 

local optimal as well as global one? 

3) How does BPHSA improve the convergence rate problem in MLP 

learning and increase the efficiency and the effectiveness of traditional 

machine learning (MLP training)? 

 

 

1.4 Dissertation Aim 

 

 

The aim of this research is to identify the efficiency of hybrid BPHSA 

compared to both standard BP and HSA in terms of classification accuracy and 

convergence rate in their application of artificial neural networks, especially MLP. 

The study will improve the learning of MLP using the benefits of both algorithms 

(HSA’s fastness and the ability to escape local minimum plus the local search ability 

of BP). 

 

 

 

1.5 Dissertation Objectives 

 

The following objectives are proposed: 

 

1. To propose BPHSA to enhance the learning performance of MLP. 

2. To compare the proposed method with BP-MLP, HSA-MLP, in terms 

of classification accuracy, ability of escaping local minimum and 

error convergence.  
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1.6 Scope of the Study 

 

 

A) This study will consider five different datasets and they are: Iris, Cancer, Wine, 

Thyroid and Glass. These mentioned datasets are used to test the performance 

of the proposed scheme (BPHSA). 

B) Matlab is used to implement MLP FFANN, BP, HSA and BPHSA algorithms. 

C) Mean Square Error (MSE) is used as a fitness or objective function.  

 

 

 

 

1.7 Significance of the Study 

 

 

The performance of HSA and BP algorithms in enhancing the MLP 

supervised training is investigated using the BPHSA integration. How BPHSA can 

avoid local minima and increase the speed of convergence rate is also studied, thus it 

is possible to determine which method is better to employ for MLP learning. 

 

 

To identify the suitable and most appropriate technique for MLPNN training 

in terms of efficiency, accuracy, less time and human capital efforts as well as less 

economical cost is more important for future study and can be implemented in real 

world applications. 

 

 

 

1.8 Dissertation Organization 

 

 

This research currently consists of the following chapters 
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1. Chapter one (introduction) presents introduction of the study, problem 

background, problem statement, objectives and the scope of the research. 

2. Chapter two (literature Review) reviews studies on machine learning 

techniques, their strengths and weaknesses and lastly solutions had been 

achieved since now and current issues on NNs learning methods.  

3. Chapter three (research methodology) discusses the framework of the 

study; datasets that will be used to train the network as well as the 

techniques (algorithms) will be conducted in this research. This chapter 

focuses on the design of the network architecture according to different 

datasets used in this study as well as the proposed methodology of the 

study. 

4. Chapter four (results) concentrates on the results obtained from the 

experiment and compares the outcome of the traditional MLP learning 

algorithm (BP) and recently SC introduced HSA and finally compares the 

results of hybrid form with the results obtained from both algorithms 

according to the datasets used as well as the accuracy and performance of 

the classifier. 

5. Chapter Five (conclusion and future work) in finally the conclusion and 

recommendation for future work will be explained and discussed
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