
i

AN ENHANCEMENT OF SLICING TEST ALGORITHM FOR INTEGRATION

TESTING OF EMBEDDED SYSTEM

AHMED SHEIKH ABDULLAHI MADEY

A dissertation report submitted in partial fulfillment of the

requirements for the award of the degree of

Master of Science (Computer Science)

Faculty of Computing

Universiti Teknologi Malaysia

MAY 2014

iii

This dissertation is dedicated especially to my beloved parents and also not

forgetting my beloved brothers and sisters for their endless supports and

encouragements.

iv

ACKNOWLEDGEMENT

 In preparing this dissertation report, I wish to express my sincere appreciation

to my supervisor Assoc.Prof. Dr. Dayang Norhayati Binti Abang Jawawi for the

guidance, advice and encouragement during my studying. The support and

suggestion that Assoc.Prof. Dr. Dayang gives inspired me to going through in this

dissertation.

 Finally my special thanks to my parents for their love and care for their

support and cheering me up at those difficult time.

v

ABSTRACT

 The complexity of testing the software of Component Based Software

Development (CBD) for Embedded Real Time (ERT) software development

highlight the challenges of designing, analyzing and testing ERT software. From this

standpoint, the complexities of CBD for ERT in software testing require suitable

software algorithms. Against these claims, a number of software testing algorithms

have been formulated such as slicing algorithm, incremental algorithm, firewall

algorithm, genetic algorithm as well as simulated annealing algorithm. Generally, not

all of these algorithms support CBD and ERT software testing of the system. By

applying slicing algorithm into ERT software testing, the complexity of ERT

software development can be decreased and at the same time promote high degree of

reuse through software testing based on component behavior. Currently, testing

algorithm based on slicing does not directly support ERT software. In this research,

the integration testing algorithm for CBD and ERT system has been proposed to

represent a promising way to test ERT software in terms of algorithm refinement.

The slicing algorithm called slicing architectures using service edges (SASE) has

been enhanced to support a component oriented programming (COP) framework for

CBD and ERT integrated system. The results shows that COP framework can be

applied into SASE algorithm definitions and it has been mapped with the SASE

algorithm based on the similarities and differences definitions. Thus, the quality of

the enhanced SASE algorithm is better in terms of algorithm criteria based on

Normative Information Model-based Systems Analysis and Design (NIMSAD)

evaluation in support of ERT and CBD.

vi

ABSTRAK

Kerumitan yang terdapat semasa menguji perisian Komponen Berdasarkan

Pembangunan Perisian (CBD) untuk Masa Nyata Terbenam (ERT) menunjukkan

cabaran-cabaran dalam mereka-bentuk, menganalisa, dan menguji perisian ERT.

Dari pandangan ini, kerumitan yang terdapat pada CBD untuk ERT memerlukan

algoritma perisian yang sesuai. Pada tuntutan ini, beberapa algoritma ujian perisian

telah dirumuskan seperti algoritma penghirisan, algoritma penambahan, algoritma

firewall, algoritma genetik dan juga algoritma penyepuhlindapan. Pada amnya, tidak

semua algoritma-algoritma ini menyokong sistem ujian perisian CBD dan ERT.

Dengan mengaplikasikan algoritma penghirisan ke dalam ujian perisian ERT,

kerumitan pada pembangunan perisian ERT boleh dikurangkan dan pada masa yang

sama menggalakkan penggunaan semula pada tahap yang tinggi menerusi ujian

perisian berasaskan perilaku komponen. Pada masa kini, algoritma ujian berasaskan

penghirisan tidak menyokong perisian ERT secara langsung. Di dalam kajian ini,

integrasi ujian algoritma untuk sistem CBD dan ERT telah dicadangkan untuk

menunjukkan cara yang lebih berpotensi untuk menguji perisian ERT di dalam istilah

penghalusan algoritma. Algoritma penghirisan telah ditingkatkan untuk menyokong

rangka kerja pengaturcaraan berorientasikan komponen (COP) untuk sistem integrasi

CBD dan ERT. Hasil menunjukkan bahawa COP boleh digunakan di dalam definisi

algoritma SASE dan telah dipetakan dengan SASE algoritma berasaskan definisi

persamaan dan perbezaan. Oleh itu, kualiti algoritma SASE yang ditingkatkan adalah

lebih baik dari segi algoritma berasaskan kriteria dan Normatif Maklumat Sistem

Analisis dan Reka bentuk berasaskan Model (NIMSAD) untuk menyokong ERT dan

CBD.

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

 DECLARATION ii

 DEDICATION iii

 ACKNOWLEDGEMENTS iv

 ABSTRACT v

 ABSTRAK vi

 TABLE OF CONTENTS vii

 LIST OF TABLES xi

 LIST OF FIGURES xii

1 INTRODUCTION

 1.1 Overview 1

 1.2 Problem Background 4

 1.2.1 CBD Software Integration Testing 6

 1.3 Problem Statement 8

 1.4 Research Aim 8

 1.5 Objectives of the Research 9

 1.6 Scope of the Research 9

 1.7 Significance of the Research 9

 1.8 Thesis Organization 10

2 LITERATURE REVIEW

 2.1 Introduction 11

 2.2 Software Test 11

 2.2.1 ERT Software Testing 13

viii

 2.3 Component Based Software Development 16

 2.4 The Test Level of CBD for ERT 18

 2.4.1 Component Testing 19

 2.4.2 Integration Testing 24

 2.5 Testing Algorithms of CBD and ERT 26

 2.6 Comparative Evaluation of CBD Testing

 Algorithms for ERT System

29

 2.7.1 Slicing Member Functions 34

 2.7.2 Overview of the Original Slicing

 Algorithm

35

 2.8 Component Oriented Programming

 Overview

44

 2.81 Component Development 45

 2.8.2 Component Integration 46

 2.9 Discussion and Summary 49

3 RESEARCH METHODOLOGY

 3.1 Introduction 50

 3.2 Research framework and Processes 50

 3.2.1 Phase One 53

 3.2.2 Phase Two 53

 3.2.3 Phase Three 54

 3.2.4 Phase Four 55

 3.2.5 Phase Five 56

 3.3 Case Study 57

 3.3.1 An Autonomous Mobile Robot Case

 Study (AMR)

57

 3.3.2 Wheelchair Motor Control 60

 3.4 Summary 61

ix

4 THE ENHANCEMENT OF TESTING

ALGORITHM BASED ON SLICING

FOR COP

 4.1 Introduction 62

 4.2 The Mapping of Slicing Algorithm and

 Component Oriented Programming

62

 4.3 Adapting COP for SASE Algorithm 66

 4.4 Applying the Enhanced SASE Algorithm

 Phases to Wheelchair Case Study

74

 4.4.1 WCH Architectural Components 82

 4.4.3 Slicing Integration Testing

 Algorithm for WCH Components

83

 4.5 Summary 84

5 THE VALIDATION OF THE ENHANCED

SASE TEST ALGORITHM

 5.1 Overview 85

 5.2 Applying the Enhanced SASE Algorithm

 Phases to AMR Case Study

85

 5.3 Applying the Original SASE Test algorithm

 On AMR

94

 5.4 The Evaluation of Enhanced SASE 101

 5.5 Summary 105

6 CONCLUSION AND FUTURE WORK

 6.1 Introduction 106

 6.2 Summary 106

 6.3 Research Contribution 107

 6.4 Future Work 109

REFERENCES 111

x

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 Comparison of testing algorithms for CBD and ERT 29

2.2 Testing Algorithm Comparison Based on ERT

Criteria

30

2.3 Relation of Requester and Provider 48

3.1 Summary of Research Phases 56

4.1 Mapping of Slicing Algorithm and COP 64

4.2 Instances of the Components and Ports 77

4.3 Relations of the Components 80

5.1 Components Instances 88

5.2 Comparison of Original SASE and Enhanced

SASE based on NIMSAD Evaluation

101

xi

LIST OF FIGURES

FIGURE NO. TITLE PAGE

1.1 Software Testing Objectives 2

2.1 Main Concepts behind Components 17

2.2 Testing Process Model 18

2.3 CBD for ERT Testing Life Cycle 22

2.4 Dynamic Architecture slice for slicing criteria 38

2.5 Example Architectural Description and its ACFG 40

2.6 A PID Component Documented In Block Form 46

2.7 AMR Components Composition 47

3.1 Research Process 51

3.2 Research Framework 52

3.3 Use Case Diagram: Analyze Phase algorithm 58

3.4 Mobile Robot Containment Hierarchies Case Study 58

3.5 Components Composition of an AMR Application

Case Study

59

3.6 Wheelchair Motor Control Composite

Component

60

4.1 SASE Enhancement Algorithm 73

4.2 ADL Descriptions of WCH Motor Component 81

4.3 Representation of WCH Motor Architecture

using SASE Notations

82

5.1 ACDG for the Architecture Description of AMR

Components

91

5.2 Representation of AMR Architecture using SASE

Notations

93

xii

5.3 ACDG for the Architecture Description

of AMR Components using Original SASE

Algorithm

99

5.4 Representation of AMR Architecture

using Original SASE Notations

100

1

CHAPTER 1

INTRODUCTION

1.1 Overview

 Software testing is a verification process in which an application of the

software or the program meets the business requirements and technology that have

dominated the design, development and works as expected. Testing of the software

also identifies significant gaps and errors in the application code which must be

corrected and fixed.

 To fix errors is important because errors are classified according to severity.

Testing requires planning, and during test planning we are able to decide which

errors are important and the reasons for failure based on the requirements and

documents of the design.

Generally, the defect is only important from the customer viewpoint because

it affects the ease of use and operation of the application (Eun, 2009). In software

testing there are three main objectives including verification, validation and fault

finding as shown in Figure 1.1.

2

Figure 1.1 Software Testing Objectives (Xia et al., 2000)

Following the software testing objectives shown in Figure 1.1, verification

process confirms that the program meets the technical specification of the test.

Furthermore, the validation process proves that the software or program meets the

needs of the business. Fault finding is the difference between the real and the

prospective result which can be traced from the source of the imbalance to an error in

the design view and the development stages (coding).

 Basically, an algorithm is as set of steps to solve a certain problem, and from

this definition we can extract that test algorithm defines the testing procedures to

achieve test objectives. The test algorithm therefore determines costs and effort of

testing. Selecting a suitable test algorithm is one of the most significant planning

tasks or decision the tester has.

 The aim is to decide which test approach optimizes the relation between the

costs of defects, the cost of testing as well as risk minimizing.

3

 Testing algorithms state how the stakeholders’ product risks are reduced at

test level, which kinds of tests are to be performed, which exit and entry may be

appropriate. Testing algorithms are established and created based on test

improvement. System test is typically used and theoretical testing algorithms may be

referred to. A testing algorithm indicates how the software functionality is to be a

developed and settled in future release. For every stage of testing, an equivalent test

algorithm should be created to test the new feature groups or sets.

 Current systems of software are more complex and difficult to control,

consequential in high cost of development, large scale, low production,

uncontrollable quality of software and the additional risk of more new technology to

change it.

 On the other hand, Component Based Software Development (CBD) is able

to meaningfully lessen test cost improvement, market time estimation and increase

maintainability, reliability and generally software systems value. This attitude has

generated a great amount of interest in both community research as well as in

software trade, which is the focus of CBD.

 Components of existing technologies have been implemented in various

systems of software like: embedded system software, application based web projects

and also object oriented circulated software component.

 Embedded Real Time (ERT) is a system that combines software and

hardware. The hardware component of the system exhorts the constraints of time

while the software reduces the total cost and test flexibility. ERT software testing is

crucial because of the combination of both hardware and software which can lead to

complexity. So, all these events require a systematic process to reduce the time and

cost of testing (Sabil and Jawawi, 2009).

4

Embedded systems are often used for many years and remain an integral part

of system support. An integrated system is much larger than the speed of the tester of

the original program and it is necessary to explain some good citations on integrated

software systems especially since the source may affect its own value based on test

performance (Petricic, 2011).

Embedded systems are often limited tools of the test although some plans

have to support a variety of programs and tools for software testing. Embedded

software testing system is more limited and often used tools of basic research, and

this is partly because embedded systems in many cases cannot be used as support

tool as many integrated systems have their own tools for debugging and testing to

reduce the number of tools for use within house tool.

With huge numbers of embedded software in application fields with great

dependability and safety, embedded software testing is progressively facing various

problems or challenges and attention must be paid to embedded software properties

while conducting researches on new test software algorithms. Although research on

software testing algorithms is detailed enough, there are still remarks on the software

testing quality evaluation. Software testing assures the quality of software enabling

people to go about their work with the knowledge that the software, which has been

tested, will operate correctly.

1.2 Problem Background

 Testing algorithms include slicing algorithm, incremental algorithm, firewall

algorithm, genetic algorithm as well as simulated annealing algorithm. All these

algorithms can be used in software testing but testing algorithms such as slicing and

Genetic are used for CBD and ERT.

5

Slicing (Lalchandani, 2008): slicing explicitly traces the modification of the

program or software which consists of all statements and segments of the software

that may be infected. Applying slicing in software architecture in software testing

can benefit in two main ways: the first concerns the maintenance of component based

software by using slicing tools on an architectural description. In addition we can

determine which components might be affected. Second, architectural reuse can be

facilitated while code reuse is very important and reusing the software design is

expected in software testing life cycle.

Genetic (Li and Chen, 2006): This is to extract two input statements into a

new testing execution by inheriting the items from software parts to execute it.

Software testing is the important instrument of assuring software quality and

software testing includes the software life cycle. Genetic algorithms (Bing and ZiLi,

2006) are stochastic algorithms that use adaptive search methods for solving

problems. They are very useful in optimization and problems of complex search.

These kinds of algorithms are based on natural evolution and on Darwinian natural

selection and the GA combines with automatic generation of testing case in ERT

systems. The goal is to uncover as many faults as possible with a potent set of tests.

Well tested data can cover complex designation paths of embedded software so

desirable testing data is not easy to find.

 Incremental (Baradhi, 1997): the test cases are selected from the outputs and

this algorithm involves only the executed test by considering the statements of the

program. Firewall: assists the testing integration by the tester. Simulated Annealing

(Baradhi, 1997): This algorithm suggests the candidate solution that is represented by

the testing execution and to be minimized by the function cost. These algorithms can

be used for components but no proven studies have been found.

Several algorithms are possible to use for testing CBD software such as

Slicing algorithm. The slicing algorithm indicates cases of test cross levels

recognizing various levels of practical concepts for the test levels (Hao and Jiang,

2011). More useful particulars must be tested at minor levels of test than at advanced

6

ones. This changeability across test stages must bear in mind reuse approaches. Less

test work provided by limited refinement of slicing as long as the improvement or

generalization operations need to be performed substantially at each level of test.

Thus, slicing algorithm improvement is a straight forward algorithm that

states useful cases of test alterations at levels of test for finding test cases to levels of

minor test where the modification based on slicing algorithm plays a role from test

phase to requirements to implementation.

1.2.1 CBD Software Integration Testing

One main problem in CBD integration testing is the instruction in which

tested component are listed and this test order is referred to as component test order

for several reasons. First, this test order concerns the order of tested components.

Second, test order of component influences test component use and test case

preparation. Third, test order of component decides the order in which faults of

component are identified. Another significant problem when integration testing of

CBD software is to make a decision concerning the component order integration. A

number of studies have determined algorithms for integration test order from

dependencies among components in the system component illustration.

The aim of all these test order steps is to minimize test step numbers to be

shaped as this is supposed to be a main rate factor for integration testing. Indeed,

steps are parts of software that have to be constructed in order to test software parts

that are either not developed yet or have not yet been unit tested but want to test

components that depend on them (Briand et al., 2003).

Slicing testing algorithm is a very important field research in software

engineering and has been used in many applications such as maintenance of

7

software, software understanding, software analysis, inverse engineering, testing as

well as debugging (Hao and Jiang, 2011). The method of CBD slicing has been

investigated in many theses since the original definition by Mark Weiser in 1979.

Weiser first proposed the idea of software slicing, and defined slicing of software as

follows: software slicing is an executable part in terms of interest point variables and

the executable part of software corresponding to the software in use.

 Static software slice (Jia et al., 2010) concerns all sentences in a software

that are related to the variable at the interest point. It analyses all possible software

running tracks so it should simply contain unconnected points with greater idleness.

Dynamic slicing (Jia et al., 2010) is established by all sentences which touch the

variable at the interest sentence point in executable software path.

On the other hand, the component oriented programming (COP) context was

initially planned for ERT software development for autonomous mobile robot

(AMR). The target audience is the researchers in fields of mechatronics and robotics

which are not from background of software engineering and do not have wide

programming knowledge.

The framework of COP is a programming framework based on Pervasive

Component Systems (PECOS) model. The proposed framework enables the idea in

PECOS to be implemented optimally without requiring any support tools and

proprietary runtime environment from the original PECOS project (Jawawi, 2007).

Thus the COP used for requirement analysis, design and implementation are not

included in the field of software testing.

8

1.3 Problem Statement

 Slicing Testing Algorithm is to support thorough CBD software integration.

Other algorithms are not well defined to be used in any COP framework because the

other algorithms are not directly supported through CBD but some of the algorithms

support ERT systems. Slicing algorithm is used to slice the program instruction and

only contains the program statements but the slicing architectures using service edges

(SASE) are used both in software architecture and software testing fields.

This study shows that slicing algorithm is much more closely related to the

CBD for COP because it can support most COP elements in terms of software

analysis and design. Hence, the main motivation of this work is to propose an

enhanced Slicing Architecture using Service Edges (SASE) in COP framework to

show application of the software components of an ERT system. Slicing algorithm is

a commonly recognized technique for analyzing and testing CBD software to address

test order of component problem and to recognize algorithm connected components.

 1.4 Research Aim

The aim of this research is to propose testing algorithm to test CBD software

for ERT system based on SASE testing algorithm which can support COP

frameworks.

9

1.5 Objective of the Research

 The aim of this research is supported by the following objectives:

i. To analyze the current testing algorithms and to study the test algorithm for

 component based software development of embedded systems.

ii. To propose the enhancement of slicing test algorithm of CBD for COP

 frameworks using in ERT system.

iii. To evaluate and validate the enhanced slicing test algorithm by comparing it

 with the original slicing test algorithm.

1.6 Scope of the Research

The scope of this research has been limited to the following:

i. This research focuses only on CBD testing algorithm for embedded real time

 system case study, and does not include other applications.

ii. This research applies CBD to verify the testing algorithm for Embedded

 Software Development.

1.7 Significance of the Research

The significance of this study is to promote the testing algorithm of CBD for

embedded software development. The study concentrates on an in-depth

understanding of CBD for ERT testing algorithm. Based on that knowledge, the

advantages that can be derived from this study are to motivate the use of algorithms

10

based on algorithm much more closely related to CBD for ERT in the software

testing.

1.8 Thesis organization

Chapter 2 discusses CBD algorithms for ERT among testing algorithms. In

Chapter 3, the research methodology is conducted in achieving the research

objectives and scopes. One case study is used involving ERT system. Chapter 4

discusses the results of the enhanced algorithm using COP frameworks. Chapter 5

discusses the validation phase. Finally, in Chapter 6, this research was concluded

based on its objectives and future work was proposed.

111

REFERENCES

Alkadi, I. S. & Alkadi, G. S. 2001, Algorithms that compute test drivers in object

oriented testing. Aerospace Conference, IEEE Proceedings, 2001

Baradhi, G. & Mansour, N. 1997, A comparative study of five regression testing

algorithms. Software Engineering Conference, 1997. Proceedings. 1997

Australian,. IEEE, 174-182.

Bo, Z. & Xiangheng, S. 2011, The effectiveness of real-time embedded software

testing. Reliability, Maintainability and Safety (ICRMS), 2011 9th

International Conference on, 2011. 661-664.

Bräunl, T. & Tay, N. 2001. Combining configuration space and occupancy grid for

robot navigation. Industrial Robot: An International Journal, 28, 233-241.

Briand, L. C., Labiche, Y. & Yihong, W. 2003. An investigation of graph-based class

integration test order strategies. Software Engineering, IEEE Transactions on,

29, 594-607.

Bing, L. & Zili, C. 2006, Pivotal techniques of embedded software testing case

generation by Genetic algorithms. Computer-Aided Industrial Design and

Conceptual Design, CAIDCD'06. 7th International Conference on,. IEEE, 1-

5.

Bonail, B., Abascal, J. & Gardeazabal, L, 2009, Wheelchair-Based Open Robotic

Platform And Its Performance Within The Ambiennet Project. Proceedings

Of The 2nd International Conference On Pervasive Technologies Related To

Assistive Environments, Acm, 63.

Castilho, O. & Trujilo, L. 2005. Multiple Objective Optimization Genetic Algorithms

For Path Planning In Autonomous Mobile Robots. Int. J. Comput. Syst.

Signal, 6, 48-63.

112

Cheein, F. A. A., De La Cruz, C., Bastos, T. F. & Carelli, R. 2009. Slam-Based

Cross-A-Door Solution Approach For A Robotic Wheelchair. International

Journal Of Advanced Robotic Systems, 6, 239-248.

El ariss, O., Dianxiang, X., Dandey, S., Vender, B., Mcclean, P. & Slator, B. 2010,

A Systematic Capture and Replay Strategy for Testing Complex GUI Based

Java Applications. Information Technology: New Generations (ITNG), 2010

Seventh International Conference on, 2010. 1038-1043.

Eun, J. 2009, A Test Process Improvement Model for Embedded Software

Developments. Quality Software, 2009. QSIC '09. 9th International

Conference on, 2009. 432-437.

Ha, X, Nsel, J., Rose, D., Herber, P. & Glesner, S. 2011, An Evolutionary Algorithm

for the Generation of Timed Test Traces for Embedded Real-Time Systems.

Software Testing, Verification and Validation (ICST), IEEE Fourth

International Conference on, 2011. 170-179.

Hao, J. & Jiang, S.-J. 2011, An approach of slicing for Object-Oriented language

with exception handling. Mechatronic Science, Electric Engineering and

Computer (MEC), 2011 International Conference on, 2011. 883-886.

Iyenghar, P. 2011, Test Framework Generation for Model-Based Testing in

Embedded Systems. Software Engineering and Advanced Applications

(SEAA), 2011 37th EUROMICRO Conference on, 2011. 267-274.

Iyenghar, P., Pulvermueller, E., Westerkamp, C. & Wuebbelmann, J. 2011,

Integrated model-based approach and test framework for embedded systems.

Specification and Design Languages (FDL), Forum on, 2011. 1-8

Jia, L., Jiao, H. & Liu, J. 2010, A dynamic program slice algorithm based on

simplified dependence. Advanced Computer Theory and Engineering

(ICACTE), 3rd International Conference on, 2010. V4-356-V4-359.

Jia Limin, Jiaohongqiang & Liu Jie, 2010. A Dynamic Program Slice Algorithm

 Based on Simplified Dependence. 3rd International Conference on Advanced

 Computer Theory and Engineering(ICACTE).

Jawawi, D. N., Mamat, R. & Deris, S. 2007. A Component-Oriented Programming

for Embedded Mobile Robot Software. International Journal of Advanced

Robotic Systems, 4.

Jawawi D. N. A., Suzila Sabil, Rosbi Mamat, Mohd Zulkifli Mohd Zaki, Mahmood

Aghajani Siroos Talab, Radziah Mohamad, Norazian M. Hamdan & Khadijah

113

Kamal, 2011, “A Robotic Wheelchair Component-Based Software

Development”, Book Chapter for Mobile Robots / Book 2, , Intech Open

Access Publisher. ISBN 978-953-307-842-7, pp. 102-126.

Kuo-chung, T. & Daniels, F. J. 1997, Test order for inter-class integration testing of

object-oriented software. Computer Software and Applications Conference,

1997. COMPSAC '97. Proceedings., The Twenty-First Annual International,

1997. 602-607.

Koskinen, J., Lintinen, H., Sivula, H. & Tilus, T. 2004. Evaluation of software

modernization estimation methods using NIMSAD meta framework.

Publications of the Information Technology Research Institute, 15.

Labiche, Y. 2011, Integration testing object-oriented software systems: An

experiment-driven research approach. Electrical and Computer Engineering

(CCECE), 2011 24th Canadian Conference on, 2011. 000652-000655.

Lalchandani, J. T. & Mall, R. 2008, Regression testing based-on slicing of

component-based software architectures. proceedings of the 1st India

software engineering conference,. ACM, 67-76.

Li, B. & Chen, Z. 2006, Pivotal techniques of embedded software testing case

generation by genetic algorithms. Computer-Aided Industrial Design and

Conceptual Design,. CAIDCD '06. 7th International Conference on, 2006. 1-

5.

Loll, V. 2000, Developing and testing algorithms for stopping testing, screening, run-

in of large systems or programs. Reliability and Maintainability Symposium,

2000. Proceedings. Annual, 124-130.

Ma, H., Dongfeng, W., Bastani, F., Yen, I. L. & Cooper, K. 2005, A model and

methodology for composition QoS analysis of embedded systems. Real Time

and Embedded Technology and Applications Symposium,. RTAS 2005. 11th

IEEE,. 56-65.

Marrero perez, A. & Kaiser, S. 2009, Integrating Test Levels for Embedded Systems.

Testing: Academic and Industrial Conference - Practice and Research

Techniques, 2009. TAIC PART '09., 184-193.

Marrero perez, A. & Kaiser, S. 2009, Reusing Component Test Cases for Integration

Testing of Retarding Embedded System Components. Advances in System

Testing and Validation Lifecycle,. VALID '09. First International Conference

on, 2009 1-6.

114

Man, K., Tang, K. & Kwong, S. 1996. Genetic algorithms: concepts and applications

[in engineering design]. Industrial Electronics, IEEE Transactions on, 43,

519-534.

Petricic, 2011, A. Predictable dynamic deployment of components in embedded

systems. Software Engineering (ICSE), 2011 33rd International Conference

on, 2011. 1128-1129.

Sabil, S. & Jawawi, D. 2009, Integration of PECOS into MARMOT for Embedded

Real Time Software Component-Based Development. Software Engineering

Advances,. ICSEA '09. Fourth International Conference on, 2009. 265-270.

Sagarna, R., Arcuri, A. & Xin, Y. 2007, Estimation of distribution algorithms for

testing object oriented software. Evolutionary Computation, 2007. CEC 2007.

IEEE Congress on, 2007. 438-444.

Srivastava, P. R. & Baby, K. 2010, Automated Software Testing Using Metahurestic

Technique Based on an Ant Colony Optimization. Electronic System Design

(ISED), 2010 International Symposium on, 2010. 235-240.

Shahid, M., Ibrahim, S. & Mahrin, M. N. R. 2011. A study on test coverage in

 software testing. Advanced Informatics School (AIS), Universiti Teknologi

 Malaysia,International Campus, Jalan Semarak, Kuala Lumpur, Malaysia.

Staats, M., Whalen, M. W., Rajan, A. & Heimdahl, M. P. E. 2010, Coverage Metrics

for Requirements-Based Testing: Evaluation of Effectiveness. NASA Formal

Methods,. 161-170.

Truscan, D., Lindqvist, J. & Lilius, J. 2008, Testable Specifications of NoTA-based

Modular Embedded Systems. Engineering of Computer Based Systems,

2008. ECBS 2008. 15th Annual IEEE International Conference and

Workshop on the, 2008. 375-383.

Wei, W. & Zhao, Y. 2009, Comparison and Analysis of the Development in Grading

Subjective Tests Algorithms. Intelligent Networks and Intelligent Systems,.

ICINIS '09. Second International Conference on, 2009. 494-497.

Wieczorek, S., Stefanescu, A. & Roth, 2010, A. Model-Driven Service Integration

Testing - A Case Study. Quality of Information and Communications

Technology (QUATIC), 2010 Seventh International Conference on the, 2010.

292-297.

Xia, C., Lyu, M. R., Kam-fai, W. & Roy, K. 2000, Component-based software

engineering: technologies, development frameworks, and quality assurance

115

schemes. Software Engineering Conference, 2000. APSEC. Proceedings.

Seventh Asia-Pacific, 2000. 372-379.

