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ABSTRACT 

In this thesis, the unsteady mixed convection flow over a cylinder of elliptic 

cross section when the major axis are horizontal (blunt orientation) and vertical 

(slender orientation) have been studied. The study focused on the solution near the 

forward and rear stagnation points subjected to constant temperature placed in an 

incompressible viscous fluid.  The unsteadiness is due to an impulsive motion of the 

free stream. The governing boundary layer equations are first reduced into a non-

dimensional form, and then, transformed into a set of non similarity boundary layer 

equations, which are solved numerically using an efficient implicit finite-difference 

method known as Keller-box method. The numerical results are obtained for various 

values of the Prandtl numbers, Pr, the mixed convection parameter,   and parameter 

for blunt and slender orientation,  . The effects of these parameter on velocity 

profiles, temperature profiles as well as Nusselt number are presented through graphs 

and tables.  It is found that the increasing value of   leads to a decreases in the 

velocity profiles for both cases, blunt and slender orientation near the forward and 

rear stagnation point, respectively. An increased value of temperature profiles is 

found near the forward stagnation point while the value is decreased near the rear 

stagnation point for the case of slender orientation. The temperature profiles are fixed 

for the case of blunt orientation. Further, near both the forward and rear stagnation 

points, it is also found that the Nusselt number is fixed with increasing   for the 

case of blunt orientation. However, for the case of slender orientation, the Nusselt 

number near the forward stagnation point is decreased whereas near the rear 

stagnation point it is increased. 
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ABSTRAK 

Dalam tesis ini, masalah aliran lapisan sempadan tidak mantap berserta 

olakan campuran yang melepasi silinder berbentuk elip bagi kedua-dua paksi utama 

adalah menegak (orientasi tumpul) dan melintang (orientasi langsing) di kaji. Fokus 

kajian ini adalah kepada penyelesaian di sekitar titik genangan hadapan dan belakang 

pada suhu malar di dalam bendalir pekat yang tidak termampat. Ketidakmantapan 

aliran adalah disebabkan oleh gerakan dedenyut arus bebas. Persamaan-persamaan 

lapisan sempadan menakluk, pada mulanya diubah bentuk kepada bentuk tak 

bermatra, kemudian diubah kepada set persamaan lapisan sempadan tak serupa, 

seterusnya diselesaikan secara berangka dengan menggunakan kaedah beza terhingga 

tersirat yang efektif dikenali sebagai kaedah kotak-Keller. Keputusan-keputusan 

berangka yang diperolehi meliputi pelbagai nilai nombor Prandtl, Pr, parameter 

olakkan campuran,   dan parameter untuk orientasi tumpul dan langsing,  . Kesan  

parameter - parameter ini terhadap profil halaju, profil suhu dan juga nombor Nusselt 

dipaparkan menerusi graf dan jadual. Didapati dengan meningkatnya nilai  

menyebabkan profil halaju menurun di sekitar titik genangan hadapan dan belakang 

bagi kes orientasi tumpul dan langsing. Peningkatan nilai profil suhu didapati berlaku 

di sekitar titik genangan hadapan tetapi menurun di sekitar titik genangan belakang 

bagi kes orientasi langsing. Namun, bagi kes orientasi tumpul, profil suhu adalah 

tetap. Seterusnya, hasil kajian juga menunjukkan nilai nombor Nusselt adalah tetap 

dengan peningkatan   di sekitar titik genangan hadapan dan belakang bagi kes 

orientasi tumpul. Walaubagaimanapun, bagi kes orientasi langsing, nombor Nusselt 

menurun di sekitar titik genangan hadapan manakala meningkat di sekitar titik 

genangan belakang.   
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CHAPTER 1 

INTRODUCTION 

1.1 Research Background 

The transfer of heat through fluid (liquid or gas) caused by molecular motion 

is known as convection. Besides that, convection is also defined as a movement of 

fluids regardless of the cause in fluids mechanics field. In general, the convection 

type of heat transfer can be divided into two basic processes. The first process is 

named as free or natural convection and the second process is forced convection. 

Forced convection occurs when a fluids flow is induced by an external force, such as 

a pump, fan or a mixer, while free convection is caused by buoyancy forces due to 

density differences created by the temperature variations in fluids. However, when 

the effect in these both convections becomes significant, then the process is 

described combined forced and free convection, which is also known as mixed 

convection. The effect is particularly marked in situations where the forced fluid 

flow velocity is low and/or the temperature difference is large.  

 

There are lot of problems about free convection constantly arise in 

engineering service. An example of free convection is the cooling process in heat 

exchanger components. Therefore, by understanding the properties of the convection 

occurring in the process, the lifespan of the heat exchanger component can be 

monitored and predicted.  
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In these recent years, unsteady flows have become significant in both 

different category of fluid mechanics and an area of convection heat and mass 

transfer. The problem of unsteady convective heat transfer has long been a major 

subject in the heat transfer theory because of its great importance from both a 

theoretical and practical viewpoint. The extra independent variables time which has 

been considered in the unsteady problem can increases of the complexity of its 

solution procedure. The unsteady effects can arise in two situations. The first 

situation is due to self-induced motion of the body and the second situation is due to 

the fluctuations or nonuniformities in the surrounding fluid. Besides that, some 

devices are required to execute time-dependent motion in order to perform their basis 

functions (McCroskey, 1977).  

 

In general, unsteady viscous phenomena play an important role in the reentry 

of space vehicles. Unsteady viscous flows have been studied quite widely and all the 

characteristic features of unsteady effects are now more or less familiar to fluids 

mechanicists. The problem of unsteady mixed convection boundary layer flow of 

Newtonian and Non-Newtonian fluid past a circular cylinder have been considered 

by Ingham and Merkin (1981) and Ali et al (2010), respectively.  

 

In addition, the study of stagnation point flow has attract much attention 

because of its capability in providing the governing equations to be much simplified 

besides allowing the process of bringing out all the essential features. The stagnation 

point solution, though it may valid in a small region in the vicinity of stagnation 

point, may function as a starting solution for the solution over the entire body, as 

proven by Lok (2008).  

 

Following the above studies, the present study aspires to obtain the unsteady 

mixed convection flow over a cylinder of elliptic cross section near forward and rear 

stagnations points for the case of constant wall temperature. This study considered 

the problem near both forward and rear stagnation point. In addition, this study also 

looks into the difference caused by blunt orientation and slender orientation. This 

boundary layer problem is solved by Keller‟s Box method described in Ali et al 

(2007). According to Keller (1978), we know that this method have been found to be 
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efficient and flexible in dealing with many type of problem, especially for free and 

mixed convection boundary layer flows. In fact, it is easily adaptable for solving 

equation of any order (Cebeci and Bradshaw, 1988) 

 

1.2 Problem Statement  

The study will investigate the following questions; (i) How Prandtl number, 

mixed convection coefficient and time affect the results of skin friction, Nusselt 

number, velocity profile and temperature profile in unsteady mixed convection over 

a cylinder elliptic cross section near both forward and rear stagnation point? (ii) 

What are the effects of blunt orientation and slender orientation to the skin friction, 

Nusselt number, velocity profile and temperature profile in unsteady mixed 

convection over a cylinder elliptic cross section near both forward and rear 

stagnation point? 

 

1.3 Objectives of the Study   

The objectives of this study are: 

i. To transform the non- dimensional governing equation of the problem into a 

system of non-similarity equation using stream function and similarity 

variables. 

 

ii. To solve the governing equation numerically using Keller box method and 

develop numerical algorithm using Matlab. 

 

iii. To determine the separation times of boundary layer near the forward and 

rear stagnation points. 
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iv. To investigate the effects of  Prandlt number, mixed convection coefficient 

and axis ratio for blunt and slender orientation on the velocity profiles, 

temperature profiles, skin friction, and Nusselt number. 

 

1.4 Scope of the study  

The unsteady mixed convection boundary layer flow is considered in an 

incompressible viscous fluid problem. The problem will be narrowed down to 

boundary layer flow over horizontal cylinders of elliptic cross section subjected to 

constant temperature.  The analysis of this study is only focusing on the forward and 

rear stagnation point. The numerical schemed used is Keller box method and the 

numerical results are obtained from various values of time, Prandlt number, mixed 

convection coefficient and axis ratio for blunt and slender orientation. The results are 

discussed based on the velocity profile, temperature profile, Nusselt number and skin 

friction coefficient. 

 

1.5 Significant of study 

Mixed convection (combined forced and free convection) flow with and 

without mass transfer occurs in many technologies and industrial applications. Its 

applications are namely solar central receiver exposed to wind currents, nuclear 

reactors cooled during emergency shutdown, heat exchangers placed in low-velocity 

environments, boundary-layer control on airfoil, lubrication of ceramic machine parts 

and food processing. Mixed convection occurs during the motion of fluid that results 

from variety in density and heat change. 

 

In environment and engineering services, mixed convection over cylinder is a 

basic and vital problem. Moreover, in manufacture industry, most of the 

manufacturing machine has its own heat exchanger components which are made 
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from tubes of elliptic cross section. The benefit of this design is it creates less 

resistance for cooling the fluid pass by. Thus, the study of heat transfer for an elliptic 

cross section cylinder is useful to create an effective and efficient heat exchanger 

component and design. 

 

1.6 Outline of Dissertation 

 This dissertation consists of six chapters including this introductory chapter, 

in which discuss about the background of research, the problem statement, 

objectives, scope and significant of the study. The literature review for the research 

problem is given in Chapter 2. 

 

 Chapter 3 contains a discussion on the mathematical formulation of the 

equations that involved in our problem of unsteady mixed convection boundary layer 

over a cylinder of elliptic cross section near forward and rear stagnation point. 

 

 Full explanation of the numerical method, the Keller box method are given in 

the Chapter 4, which are presented and described particularly for the problem in this 

study. Stepwise development of the method was stated. The Keller box method used 

in this study is programmed in Matlab. The complete program of the specific 

problem discussed in Chapter 4 is given the Appendix B. 

 

 Further, Chapter 5 includes the result and discussion of the problem. The 

numerical computation of results are presented both in the form of tables and graphs. 

Finally, Chapter 6 contains a summary of the dissertation and several 

recommendations for future research.   
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