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ABSTRACT 

 

 

          This research is to compute the Green’s function on an unbounded simply 

connected region by conformal mapping and by solving an exterior Dirichlet 

problem. The exact Green’s function is found by using Riemann mapping and 

M  bius transform. The Dirichlet problem is then solved using a uniquely solvable 

Fredholm integral equation on the boundary of the region. The kernel of this integral 

equation is the generalized Neumann kernel. The method for solving this integral 

equation is by using the Nystrӧm method with the trapezoidal rule to discretize it into 

a system. The linear system is solved by the Gaussian elimination method. As an 

examination of the proposed method, several numerical examples for some various 

test regions are presented. These examples include a comparison between the 

numerical result and the exact solutions. 
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ABSTRAK 

 

 

      Kajian ini adalah untuk mengira fungsi Green pada rantau terkait ringkas tak 

terbatas dengan kaedah pemetaan konformal dan dengan kaedah menyelesaikan 

masalah Dirichlet luaran. Fungsi tepat Green boleh ditemui dengan menggunakan 

pemetaan Riemann dan penjelmaan M  bius. Masalah Dirichlet kemudiannya 

diselesaikan menggunakan persamaan kamiran Fredholm yang mempunya 

payeleoaian unik di sempadan rantau ini. Inti persamaan kamiran ini adalah inti 

Neumann teritlak. Kaedah untuk menyelesaikan persamaan kamiran ini ialah dengan 

menggunakan kaedah Nystrӧm dengan petua trapezoid untuk diskritkannya kepada 

sebuah sistem. Sistem linear diselesaikan dengan kaedah penghapusan Gauss. Untuk 

mengkaji kaedah ya ng dicadangkan, contoh-contoh berangka bagi beberapa rantau 

ujian dibentangkan. Contoh-contoh ini termasuk perbandingan antara keputusan 

berangka dan penyelesaian  tepat. 
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RESEARCH FRAMEWORK 

 

 

 

 

 

George Green (1793–1841) 
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1.1      Introduction  

          Green's functions are presented by the British mathematician George Green 

(1793-1841), who first developed this concept in 1830s. In the modern linear partial 

differential equations, Green's functions are analyzed largely from the point of view 

of fundamental solutions. In the following sections, Green’s functions are described 

in one-dimension and two-dimension space. 

 

Green’s function in one-dimension 

            Green’s function in one-dimension has several applications related to 

boundary value problems in ordinary differential equations. In this section the 

Green’s function is introduced in the context of a simple one-dimensional problem. 

Consider the differential equation in the standard form (Jeffrey, 2001) 

   

   
     

  

  
            (1.1) 

which is defined over the interval        . 

       Now let        and       be two linearly independent solutions of the 

homogeneous differential equation, with        such that at      it satisfies the 

homogeneous boundary condition  

                    (1.2) 

and       such that at     it satisfies the homogeneous boundary condition  

                    (1.3) 

The solution of equation of (1.1) can be written as 

      
          

    

 

 

        
          

    

 

 

        (1.4) 

where 
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The solution (1.4) can be written as 

                   
 

 

 (1.5) 

where the function        is called the Green’s function for differential equation 

(1.1) described over the interval         This function is defined as 

       

 
 
 

 
           

    
             

          

    
               

  (1.6) 

 

The Green’s function in (1.5) has the following properties (Jeffrey, 2001): 

1. The piecewise defined Green’s function         satisfies the differential          

equation in the respective intervals       and              

2.        is continuous function of    for        

3.        satisfies the homogeneous boundary conditions. 

4. The function          is continuous for         and      , but it is 

discontinuous across where it experiences the jump 

                       

           where    is derivative of G with respect to x. 

 

Green’s function in two-dimensions 

In this section, we illustrate the use of Green’s function in two-dimensions to 

the boundary value problems in partial differential equations which arise in a wide 

class of problems in engineering and mathematical physics. 

       The concept of Green’s functions is intimately tied to the Dirac delta function. 

The Dirac delta function            in two-dimensions is presented by 

(Rahman, 2007): 
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for arbitrary continuous function         in the region  . 

        The application of Green’s function in two-dimension can best be described by 

considering the solution of the Dirichlet problem  

                        in two-dimensional region   

                                                                on the boundary  , 

where      
  

   
 

  

   
   

           The Green’s function denoted by            for the Dirichlet problem 

involving the Laplace operator is defined as the function which satisfies the 

following properties: 

i-               in   ,     on    

  ii-           is symmetric, that is,                       

 iii-          is continuous in (         but    

  
  the normal derivative has a 

               discontinuity at the   point       which is specified by the equation 

   
   

 
  

    

      

where n is the outward normal to the circle  

                             

 

Otherwise 
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Theorem 1.1 (Rahman, 2007) 

         The solution of the Dirichlet problem            in   with the boundary 

condition          on    is given by 

                             
 

  
  

   

     (1.7) 

where G is the Green’s function and n denotes the outward normal to the boundary   

of the region  . 

        

1.2    Background of the problem 

 

In 1828 George Green (1793–1841) published an Essay on the Application of 

Mathematical Analysis to the Theory of Electricity and Magnetism. Green’s essay 

remained relatively unknown until it was published between 1850 and 1854. In 1877 

Carl Neumann considered the concept of Green’s functions in his study of the 

Laplace’s equation. 

      With the function’s success in solving Laplace’s equation, other equations began 

also to be solved using Green’s functions. In the case of the heat equation, in 1888 

Hobson derived the free-space Green’s function for one, two and three dimensions.  

Indeed, Sommerfeld would be the great champion of Green’s functions at the turn of 

the 20th century because he presented the modern theory of Green’s function as it 

applies to the heat equation (Duffy, 2001). 

       As mentioned, Green’s functions have become a fundamental mathematical 

technique for solving boundary value problems and other important equation in 

applied mathematics. Properties of Green’s functions for bounded region have been 

investigated in detail by many authors.  

We next give a Green’s function on unbounded simply connected region.  

Consider the Green’s function            that satisfies 

 

        

   
 

        

   
                          

(1.8) 
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with boundary condition as 

                        (1.9) 

Here   can be bounded or unbounded region and        is the Diract delta-function. 

If   is the unbounded half-plane             , then the classical Green’s 

function is given by (Hon et al., 2010) 

           
 

  
   

             

             
   (1.10) 

   Green's function for the disk       is given by  

        
 

  
   

   

     
     

 
(1.11) 

where   is inside the unit disk and is a pole of G. 

      For arbitrary bounded simply connected regions    Green's function can now be 

found by the method of conformal transplantation. Let        map   conformally 

onto       and      continuously onto      . If   is the Green's function 

for  , the function 

                           

has all properties of Green's function for the unit disk, and hence must agree with 

(1.10). It follows that the desired Green's function for   is given by (Henrici, 1986) 

         
 

  
   

          

           
     (1.12) 

 

In general the Green’s function for   can be expressed by 

             
 

  
                                 (1.13) 

 where u is the unique solution of the interior Dirichlet problem 
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(1.14) 

 

 Nasser (2007) has developed a new method for solving the interior and 

exterior Dirichlet problem in simply connected regions with smooth boundaries. His 

method is based on two uniquely Fredholm integral equations of the second kind 

with the generalized Neumann kernel. Recently, his method has been used by 

Alagele (2012) for computing Green’s function on bounded simply connected region 

only. This research wishes to extend the work by Alagele (2012) for computing 

Green’s function on an unbounded simply connected region by getting a unique 

solution of the exterior Dirichlet problem using integral equation approach with the 

generalized Neumann kernel. 

1.3 Statement of the problem 

This research is to compute the Green’s function on an unbounded simply 

connected region by conformal mapping and by solving an exterior Dirichlet 

problem via an integral equation with the generalized Neumann kernel. 

1.4           Objectives of Study 

The objectives of this research are: 
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i. To investigate the properties of Green’s function for unbounded simply 

connected region and its connection with the exterior Dirichlet problem 

and conformal mapping. 

ii. To compute the Green’s function on an unbounded simply connected 

region by using conformal mapping method. 

iii. To compute Green’s function on an unbounded simply connected region 

by solving an exterior Dirichlet problem via an integral equation with the 

generalized Neumann kernel. 

iv. To create a numerical technique for solving the boundary integral 

equation using MATHEMATICA. 

v. To compute and graph Green’s functions on several test regions. 

1.5         Scope of Study 

            There are Dirichlet problems and Green’s function for bounded and 

unbounded multiply connected regions. The main concern of this research is the 

evaluation of Green’s function on the unbounded simply connected region with 

smooth boundary. The boundary integral equation method which involves the 

generalized Neumann kernel and conformal mapping method are considered for a 

computing Green’s function. 
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