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ABSTRACT 

 

 

 

 

Studies on silica glass (SiO2) optical fibre as thermoluminescent 

materials for medical radiation dosimetry have been conducted by several 

research groups. This study focuses on the thermoluminescence (TL) 

response, linearity, sensitivity, dose response, fading, reproducibility  and 

minimum detectable dose of 12 optical fibres sample namely Ge (A) Batch 1, 

2 and 3, Ge (B), Multi Photonic Crystal Fibre (MPCF, 220 µm), Multi 

Photonic Crystal Fibre (MPCF, 2 mm), photonic crystal fibres (PCF), 

Dummy Flat Fibre (DFF), Flat fiber, Photosensitive Flat Fibre (PFF), Erbium 

(Er) and Aluminium/ Thulium (Al + Tm) doped optical fibre. A comparison 

was performed with TLD-100 (chips) to obtain the best TL response among 

the samples. Irradiation were performed with 6 and 10 MV photons covering 

the dose range of 1 Gy to 4 Gy by using linear accelerator machine Elekta 

Synergy
TM 

at Pantai Hospital, Kuala Lumpur
 
and Varian Model 2100C linear 

accelerator at University Malaya Medical Centre (UMMC). The comparisons 

of TL response with different model linear accelerators involved in this 

research were also performed. The results show that the highest sensitivity 

was obtained by using TLD-100, followed by PFF, Flat, Ge (A) Batch 1, 

MPCF (2 mm), Ge (A) Batch 3, Ge (A) Batch 2, DFF, Al+Tm, Ge (B), Er, 

MPCF (220 µm) and PCF. The fading of 5 optical fibres Ge (A) Batch 1, 

PFF, Er, Flat Fibre and PCF were determined and the loss of the TL signal for 

these TL materials were 10%, 29%, 30%, 30% and 43%, respectively. The 

dopant concentrations of Ge (A) Batch 1, Ge (B) and Er were found to be in 

the range of 0.03-0.72 mol % while the Zeff was in the range of 11.9-17.1. 

These TL materials have great potential to be introduced as new radiation 

dosimeters. 
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ABSTRAK 

 

 

 

 

Kajian mengenai serabut optik kaca silica (SiO2) sebagai bahan 

luminesens terma bagi dosimeter sinaran perubatan telah dijalankan oleh 

beberapa kumpulan penyelidik. Kajian ini tertumpu kepada sambutan 

luminesens terma, kelinearan, kepekaan, sambutan dos, kepudaran, 

kebolehulangan  dan dos minimum dikesan bagi 12 jenis sampel gentian 

optik SiO2 iaitu Ge (A) kumpulan 1, 2 dan 3, Ge (B), ‘Multi Photonic Crystal 

Fibre’ (MPCF, 220 µm), ‘Multi Photonic Crystal Fibre’ (MPCF, 2 mm), 

‘photonic crystal fibres’ (PCF), ‘Dummy Flat Fibre’ (DFF), ‘Flat fiber’, 

‘Photosensitive Flat Fibre’ (PFF), ‘Erbium’ (Er) dan ‘Aluminium/ Thulium’ 

(Al + Tm). Perbandingan terhadap TLD-100 (cip) juga dilakukan untuk 

mengetahui sampel yang paling baik sambutan luminesens terma. Penyinaran 

telah dilakukan dengan foton 6 dan 10 MV pada julat dos 1-4 Gy dari sumber 

pemecut linear Elekta Synergy
TM 

di Hospital Pantai, Kuala Lumpur dan 

pemecut linear Varian Model 2100C di Pusat Perubatan Universiti Malaya 

(PPUM). Perbandingan sambutan luminesens terma dengan menggunakan 

model pemecut linear yang berbeza juga telah dilakukan. Keputusan 

menunjukkan kepekaan luminesens terma yang paling tinggi diperoleh 

menggunakan TLD-100, diikuti oleh PFF, ‘flat fiber’, Ge (A) kumpulan 1, 

MPCF (2 mm), Ge (A) kumpulan 3, Ge (A) kumpulan 2, DFF, Al+Tm, Ge 

(B), Er, MPCF (220 µm) dan PCF. Kepudaran bagi 5 gentian optik iaitu Ge 

(A) Kumpulan 1, PFF, Er, Flat Fibre dan PCF telah ditentukan dan isyarat 

luminesens terma yang hilang masing-masing adalah 10%, 29%, 30%, 30% 

dan 43%. Kepekatan dopan ditemui adalah dalam julat 0.03-0.72 mol % 

manakala Zeff dalam julat 11.9-17.1. Bahan luminesens terma ini mempunyai 

potensi yang baik untuk diperkenalkan sebagai dosimeter sinaran yang 

baharu. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 
 

 

 

1.1  Overview  

 

 

Radiotherapy is one of the modalities that use high energy X-rays, gamma rays or 

electrons to deliver ionizing radiation. It is a treatment that kills the malignant tumor 

in the patient body (Davies, 2008). A malignant tumor is an abnormal cell and 

potentially unlimited growth. A radiotherapy treatment can be divided into two parts 

which are external and internal beam therapy. For external beam therapy, the cancer 

cells are treated by machine outside the patient body and for internal therapy, 

radiation is put inside to the patient body, in or near to the cancer cell. 

 

 

Due to ionizing radiation can cause harmful effects such as deterministic or 

stochastic effects, safety and radiation protection should be emphasized to maximize 

the radiation dose to cancer cells and at the same time to minimize damage and 

injury to healthy cells (Bartesaghi et al., 2007). Dosimeter is one of the important 

tools in radiotherapy treatment to detect the amount of absorbed radiation dose to the 

patient body.  

 

 

Thermoluminescence (TL) is one of the individual dosimeter that is commonly 

used in radiation dosimetry and the detector that are most often used for in vivo 

dosimetry purposes (Wagiran et al., 2011). In vivo dosimetry is important because it 
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helps to reduce the risk of serious accidents and also to ensure that the treatment 

carried out as planned in addition to the requirement of the law. It is because it able 

to determine the accurate dose delivered to the patient body. TL detector must also 

be similar to the equivalent tissue to facilitate the application of radiation dosimeter, 

especially in clinical applications and radiation therapy. Dosimeter material should 

approach the atomic composition of biological tissue of human body, (Zeff = 7.42) for 

the measurement of absorbed dose X-rays and gamma irradiation (Furetta et al., 

2001). 

 

 

Phenomena of TL have long been used in radiotherapy. First application of these 

phenomena as dosimetry was introduced by Daniel et al in 1953 (Jung et. al, 2004).  

As an improvement and a better understanding of the nature of the material in order 

to develop new TL materials, many researches work have been carried out. Personal, 

environment and clinical dosimetry is examples of TLD application technique (Bos, 

2001). Dosimeter material or phosphors that are usually used in the TLD dosimeter is 

calcium fluoride, calcium sulfate, lithium borate, lithium fluoride and potassium 

sulfate (Lancaster, 1969). The TLD material based on LiF phosphor is known as 

TLD-100. Lithium fluoride, LiF, doped with magnesium and titanium which denoted 

by LiF: Mg, Ti are used widely today (Yaacob et al., 2011). 

 

 

Although TL dosimetry is a well-established technique and is widely used in 

radiation dosimetry especially for application in radiotherapy, there are some 

limitations of it such as poor spatial resolution and hygroscopic problem. Therefore, 

many research in silica glass (SiO2) optical fiber as TL materials are carried out to 

overcome these limitations. The use of SiO2 in radiation dosimetry is very helpful 

because their transmission signal loss is low (Chen and Jaluria, 2009). Present or 

addition dopant in silica also can offer advantages in radiation dosimetry as it can 

increase the radiation sensitivity of the silica by providing a high number of traps. In 

addition, new defects and absorption bands can appear (Yaakob et al., 2011).  
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1.2  Background of the Problem 

 

 

Ionizing radiation is energy in the form of waves or particles that will able to 

ionize the matter when passes through it. Ionizing radiation can be divided into two 

categories which are indirect radiation and direct radiation. X-ray, gamma ray and 

neutron are the examples of the indirect radiation which first produce charge 

particles before the charge particles ionized the matter. Meanwhile, alpha and beta 

particles are direct radiation which this particles will ionize the matter directly 

(Wondergem, 2010). 

 

 

Exposure to the ionizing radiation can contribute to acute and chronic effect 

based on their absorbed dose level, which determines the severity of the effect; 

expose volume size, which indicates external whole or partial body exposure, or 

localize exposure and the nature of radiation (N´enot, 2009). Acute effect is the 

effect of ionizing radiation that occurs when large dose delivered at short period. 

Meanwhile, small amount of dose received over a long period of time is called 

chronic effect.   

 

 

Recently, ionizing radiation is broadly used in medical field like in diagnosis, 

treatment and sterilization. Radiotherapy is one of the modalities in medical that use 

ionizing radiation to kill cancer cells. When using radiation to treat cancer cell, the 

healthy cells will also be injured. Therefore, the amount of absorbed dose in patients 

is important to avoid the side effects of radiation to the patient. As precaution step in 

order to avoid any affect that occur while exposure to ionizing radiation, one tool 

which is called dosimetry is to detect amount of absorbed dose in the patient body. 

 

 

 TL is one of the individual dosimeter that is widely used in radiation dosimetry. 

Previously, film badges were widely used as radiation detectors before the 

development of TLD dosimeter. TLD replaced the film badge in radiation dosimeter 

because of the weakness and deficiencies of the film badge system. Examples of film 

dosimeter weaknesses are that it cannot be exposed to light before being processed, 

cannot reflect the actual readings at low photon energy, does not give an immediate 
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reading and false image will be formed under pressure, heat and chemicals on the 

film (Wagiran, 1997). 

 

 

Recently, a lot of researches on silica were developed due to its potential as 

individual dosimeters. It is because silica glass (SiO2) optical fibre help to overcome 

the limitation existed on the TL dosimeter. The advantage of silica is that it is able to 

improve positional sensitivity, typically ~200µm. In addition, silica is impervious to 

water because it forms a glass in the fibre-preforming process. Therefore, it is 

suitable for usage in intercavitary and interstitial measurements (Hashim, 2009). 

 

 

 

 

1.3  Problem Statement 

 

 

The TLD phosphors that are widely used in medical field are LiF:Mg, Ti, 

LiF:Mg, Cu, P and Li2B4O7:Mn. However, these well-established phosphors have 

some drawbacks including being hygroscopic and poor spatial resolution-up to a few 

mm (Hashim, 2006). With these restrictions in mind, novel TLD materials are 

currently identified based on doped SiO2 optical fibres, which offer characteristics 

that provide good potential for broadening the applicability of TLD. 

 

 

Many researches about silica have not clearly give the information on the most 

appropriate material that is suitable to be used as dosimeter. It is because not all 

material can be used as effective radiation detector. Many criteria must be concerned 

and analyzed in identify the suitable and appropriate material which is able to 

become a good phosphor in radiation detector especially in term of personal 

dosimeter. The type of fibre and radiation parameters will determine the TL 

performance of irradiated optical fibre.  

 

 

The linearity, sensitivity, dose response, energy response, fading, reproducibility 

and minimum detectable dose of optical fibres must be determined to know the 

performance of TL response of each fibre. The TL results are compared with those of 

the commercially available TLD-100 (Yaacob  et al., 2011).  



5 
 

The comparison of TL response between different type of flat fibre which is 

photosensitive flat fibre, flat fibre and dummy flat fibre must be determined. 

Moreover, the TL response of multi photonic crystals fibre (MPCF) that have 

different diameter at their core should also be carried out and compared with TLD-

100 (chips). The comparison of the type of flat fibre and MPCF with TLD-100 

(chips) are carried out to study their potential as new TL dosimetry in radiation 

therapy application. 

 

 

In addition, the percentage of dopant added to the optical fibres must be 

determined because the exact amount of dopant added to these fibres is not specified 

by the manufacturers. The analyses of the dopant concentration percentage are to be 

determined by using Scanning Electron Microscopy (SEM). In this research, the 

dopant concentration for Ge (A), Ge (B) doped optical fibre and Erbium (Er) will be 

explored. 

 

 

 

 

1.4  Research Objectives  

 

 

The objectives of the research are as follows: 

 

 

1) To study the dosimetric properties which are linearity and sensitivity with 

respect to dose response, energy response, TL glow curve, fading, 

reproducibility and minimum detectable dose of optical fibres and TLD-100 

subjected to photon irradiation. 

 
2) To compare the TL response between single mode optical fibre, 

multiphotonic crystal fibres (MPCF) with different diameter of their core and 

also type of flat fibre. 

 

3) To determine the dopant concentration and effective atomic number, Zeff, of 

the Ge (A), Ge (B) and Erbium (Er) doped optical fibre using Scanning 

Electron Microscopy (SEM). 
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1.5  Significance of Research 

 

 

i. Able to overcome the limitations that exist in the TLD-100 which are 

hygroscopic and poor spatial resolution.  

 

 

ii. Apply optical doped fibre as TL material to improve individual dosimetry and 

can save the cost of this dosimetry because the optical fibre SiO2 is more 

economical. 

 

 

iii. Able to improve positional sensitivity, typically ~ 200µm and optical fibre 

can use in intercavitary and interstitial measurements since the fibres are 

impervious to water. 

 

 

 

 

1.6  Scope of Study 

 

 

In this research, the 12 types of optical fibres which are MPCF (220 µm), MPCF 

(2 mm), Ge (A) Batch 1, 2 and 3, Ge (B), photonic crystal fibres (PCF), Flat fiber, 

Dummy Flat Fibre (DFF), Photosensitive Flat Fibre (PFF), Erbium (Er) and Al + Tm 

were investigated to obtain their dosimetric properties which are effective atomic 

number, energy response, linearity and sensitivity with respect to dose response, TL 

glow curve, reproducibility and minimum detectable dose of each optical fiber. The 

difference between Ge (A) and Ge (B) is their dopant concentration. In this study, 3 

batches of Ge (A) are study which the batch is referring to the time these fibres 

received from the supplier. Harshaw TLD 3500 is use to read TL response of the 

optical fibres which are already exposed with photon beam. The glow curves for each 

sample are obtained and the results are compared with TLD-100 (chips).  

 

 

 The determination of the fading effect of the samples has been performed by 

using 6 MV photon irradiation at dose 1 Gy.  Readings of TL yield were obtained on 

14 consecutive days following the time of irradiation. The reproducibility of the 
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samples characteristic also were examined. The fading characteristics of 5 TL 

materials which are Ge (A) Batch 1, Er, Photonic crytals fibre, Photosensitive Flat 

Fibre and Flat fibre are studied.  

 

 

 The irradiation on the core of the optical fibre has been conducted at dose 

levels ranging from 1–4 Gy by using a linear accelerator Elekta Synergy
TM

 (LINAC) 

at Department of Radiotherapy and Oncology, Pantai Hospital, Kuala Lumpur and 

Varian Model 2100C linear accelerator at Clinical Oncology Unit, University Malaya 

Medical Centre (MMUC). All samples were irradiated in solid water phantom with 6 

and 10 MV photon energy. The TL results obtained are compared with TLD-100.  

 

 

This research has also been carried out to determine dopant concentration and 

effective atomic number, Zeff for Ge (A) Batch 1, Ge (B) and Er doped optical fibre. 

Scanning electron microscope (SEM) is used in this research to obtain the effective 

atomic number by measuring the composition of the elements present.  

 

 

The present chapter has provided an introduction to the problems associated 

with TL and significance of the optical fibre in this study. The physics behind the 

thermoluminescence and review of the existing literature regarding the subject is 

described in Chapter 2. The methods of preparing sample, irradiation process and 

analyzing the TL glow curves will be described theoretically in Chapter 3. In chapter 

4, the range of thermoluminescence studies and the results obtained are presented 

and discussed in detail. Chapter 5 summarizes the findings of this investigation, and 

provides an outlook for future study in this area. 
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