HYDROPHOBIC, STRUCTURAL AND OPTICAL PROPERTIES OF ZINC SILICA THIN FILMS

NUR AIMI SYAQILAH BINTI AZIZ

UNIVERSITI TEKNOLOGI MALAYSIA

HYDROPHOBIC, STRUCTURAL AND OPTICAL PROPERTIES OF ZINC SILICA THIN FILMS

NUR AIMI SYAQILAH BINTI AZIZ

A thesis submitted in fulfillment of the requirements for the award of the degree of Master of Science (Physics)

> Faculty of Science Universiti Teknologi Malaysia

> > MAY 2013

To my beloved family

Thanks for all the efforts, guidance, tender support and blessings that shower on me.

ACKNOWLEDGEMENT

Firstly, I would like to express my deepest gratitude to Almighty God; because of His Blessings, I am able to complete my final project successfully and within the stipulated time. I would like to express my appreciation and thanks to my project supervisor, PM Dr. Karim bin Deraman for his guidance and constructive criticisms. He has been the determining factor in starting and finishing this research and I learned a lot from this study.

I am highly indebted to Ministry of Science, Technology and Innovation (MOSTI) for funding my studies and provide science fund under Vot. 79388 and Sultanah Zanariah Library, UTM also deserve my appreciation for supplying the relevent literatures.

Also not forgetting to convey my deeply appreciation to Material Lab members, Mr. Md. Jaafar Raji, Puan Anisah, Thin Films Lab, Ibnu Sina Institute, UTM, and AMREC of SIRIM Kulim who had provided me with samples information and also cooperation during the process of conducting my project in the laboratory. Through their guidance and tolerance, I am now more confident with laboratory works and analysis.

Finally, an honorable mention goes to my family and friends for their understandings and supports in completing my project. Without helps from them, I would face many difficulties while doing my project.

ABSTRACT

A fundamental study was conducted to investigate the hydrophobic properties, structural characteristics, surface morphology and topology, and luminescence properties of the zinc silica thin films due to various ZnO content. Hydrophobically zinc silica thin films, xZnO-(1-x)SiO₂ with 0 < x < 20 wt%, have been prepared using a low temperature sol-gel process and dip coating technique. The hydrophobic properties were determined using contact angle measurement which gave the static water contact angle of $102 \pm 1^{\circ}$ for 20 wt% of ZnO. The structural characteristics were investigated using Infrared (IR) Spectroscopy in the range of 400 - 4000 cm⁻¹. The peaks observed on the spectra showed the C-H, C-H₃, Si-O-Si, Si-O-Zn and Zn-O bonding. The changes in morphology and topology were characterized by Atomic Force Microscopy (AFM) and Field Emission Scanning Electron Microscopy (FESEM). The surface roughness of the hydrophobic coatings showed a maximum value of 148.32 nm while the maximum size of the pores was found to be 6.47 μ m. The optical absorption and photoluminescence properties were studied by means of UV-Visible optical absorption and Photoluminescence (PL) spectroscopy. All samples exhibited more than 90 % optical transmittance which indicated a higher transparency of the films. The emission spectra showed broad and sharp peaks of luminescence at 390, 420, 550 and 740 nm corresponding to the characteristic of Zn^{2+} due to transitions of ${}^{2}S_{1/2} \rightarrow {}^{2}D_{5/2}$, ${}^{2}S_{1/2} \rightarrow {}^{2}D_{3/2}$, ${}^{2}D_{3/2} \rightarrow {}^{2}P^{\circ}_{3/2}$ and $^{2}D_{5/2} \rightarrow ^{2}P^{\circ}_{3/2}$, respectively. The thin films prepared in this work have shown to be promising materials for use in hydrophobic and water-resistant applications.

ABSTRAK

Satu kajian asas telah dijalankan untuk menyiasat sifat hidrofobik, ciri-ciri struktur, morfologi dan topologi permukaan, dan sifat-sifat luminesen daripada zink silika saput tipis terhadap kepelbagaian kandungan ZnO. Secara hidrofobik, zink silika saput tipis, xZnO-(1-x) SiO₂ dengan 0 < x < 20 % berat, telah disediakan dengan menggunakan proses sol-gel bersuhu rendah dan teknik lapisan celup. Ciriciri hidrofobik telah ditentukan dengan menggunakan pengukuran sudut sentuh yang memberikan sudut sentuhan air statik iaitu $102 \pm 1^{\circ}$ untuk 20 % berat ZnO. Ciri-ciri struktur telah disiasat menggunakan Inframerah (IR) Spektroskopi dalam julat 400-4000 cm⁻¹. Didapati puncak pada spektrum menunjukkan terdapat ikatan C-H, C-H₃, Si-O-Si, Si-O-Zn dan Zn-O. Perubahan dalam morfologi dan topologi telah diukur dengan menggunakan Mikroskopi Tenaga Atom (AFM) dan Mikroskopi Elektron Pengimbasan Pancaran Medan (FESEM). Kekasaran permukaan lapisan hidrofobik menunjukkan nilai maksimum 148.32 nm manakala saiz maksimum liang udara didapati sebanyak 6.47 µm. Penyerapan optik dan sifat-sifat fotoluminesen dikaji melalui penyerapan UV-optik nyata dan Spektroskopi Fotoluminesen (PL). Semua sampel menunjukkan penghantaran optik lebih daripada 90 % iaitu menunjukkan ketelusan cahaya yang lebih tinggi daripada filem. Pancaran spektrum menunjukkan puncak luminesen yang luas dan tajam pada 390, 420, 550 dan 740 nm sepadan dengan ciri-ciri Zn^{2+} disebabkan oleh peralihan daripada ${}^{2}S_{1/2} \rightarrow {}^{2}D_{5/2}$, ${}^{2}S_{1/2} \rightarrow {}^{2}D_{3/2}$, $^{2}D_{3/2} \rightarrow ^{2}P^{\circ}_{3/2}$ dan $^{2}D_{5/2} \rightarrow ^{2}P^{\circ}_{3/2}$, masing-masing. Saput tipis yang disediakan dalam kerja ini telah menunjukkan bahan-bahan yang berpotensi untuk digunakan dalam aplikasi hidrofobik dan kalis air.

TABLE OF CONTENTS

TITTLE

DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	V
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	xi
LIST OF FIGURES	xii
LIST OF ABBREVIATIONS	XV
LIST OF SYMBOLS	xvi

1 INTRODUCTION

CHAPTER

1.1	Research Background	1
1.2	Problems of Statement	3
1.3	Objectives of the study	3
1.4	Scope of study	4
1.5	Significance of study	5

PAGE

2 LITERATURE REVIEW

2.1	Introdu	action	6
2.2	Hydroj	phobic Studies	7
	2.2.1	Water Contact Angle and Humidity	7
	2.2.2	Water Contact Angle and Surface Roughness	10
	2.2.3	Water Contact Angle and Surface Morphology	12
2.3	Silica '	Thin Films Studies	13
	2.3.1	Infrared Spectra of Silica Thin Films	13
	2.3.2	Optical Properties of Silica Thin Films	15
	2.3.3	Luminescence properties of Silica Thin Films	17
2.4	Zinc T	hin Films Studies	19
	2.4.1	Structure Properties of Zinc Thin Films	19
	2.4.2	Infrared Spectra of Zinc Thin Films	21
	2.4.3	Optical Properties of Zinc Thin Films	22
	2.4.4	Luminescence Properties of Zinc Silica Thin Films	24
2.5	Zinc S	ilica Thin Films Studies	26
	2.5.1	Structure Properties of Zinc Silica Thin Films	26
	2.5.2	Infrared Spectra of Zinc Silica Thin Films	28
	2.5.3	Optical Properties of Zinc Silica Thin Films	29
	2.5.4	Luminescence Properties of Zinc Silica Thin Films	30

3 RESEARCH METHODOLOGY

3.1	Introd	uction	33
3.2	Sol Pr	eparation and Thin Film Deposition	34
	3.2.1	Substrate Preparation	34
	3.2.2	Sol Preparation	34
	3.2.3	Dip Coating Process	37
	3.2.4	Annealing Process	39

3.3	Water Contact Angle (WCA) measurement	39
3.4	X-Ray Diffraction (XRD) measurement	42
3.5	Fourier Transform Infrared (FTIR) Spectroscopy	44
	measurement	
3.6	Atomic Force Microscopy (AFM) measurement	47
3.7	Field Emission Scanning Electron Microscopy	49
	(FESEM) and Energy Dispersive X-Ray Spectroscopy	
	(EDAX) measurements	
3.8	UV-visible spectroscopy measurement	51
3.9	Photoluminescence (PL) spectroscopy measurement	53

4 **RESULTS AND DISCUSSION**

4.1	Introduction	55
4.2	Prepared Thin Films	56
	4.2.1 Zinc silica thin films	56
	4.2.2 Withdrawal Speed	57
4.3	Wettability Analysis	60
4.4	Humidity Analysis	63
4.5	Chemical Compositional Analysis	65
4.6	X-Ray Diffraction Analysis	67
4.7	Infrared Analysis	68
4.8	Surface Morphology and Topology Analysis	73
	4.8.1 Atomic Force Microscopy (AFM) Analysis	73
	4.8.2 Field Emission Scanning Electron Microscopy	77
4.9	Optical Transmission Studies	79
	4.9.1 Optical Band Gap (Eg)	81
4.10	Luminescence Studies	85

5 CONCLUSIONS AND RECOMMENDATIONS

5.1	Conclusions	88
5.2	Further Studies	90

REFERENCES

91

LIST OF TABLES

TITLE

TABLE NO.

2.1	The humidity test of silica thin films	9
2.2	The water contact angle, transmittance and surface	11
	roughness of silica films	
2.3	Fourier Transform Infrared (FTIR) assignment bands of	14
	silica thin films	
2.4	The Infrared (IR) band assignment of ZnO nanocrystal structure	22
2.5	Infrared (IR) band assignments of silica gel-zinc acetate	28
	sample	
2.6	Optical energy band gap of ZnO:SiO ₂ thin films	30
4.1	The nominal composition and physical appearance of zinc	56
	silica thin films	
4.2	The water contact angle before and after exposing to	64
	humid environment	
4.3	IR assignment and vibration mode with their measured	72
	and reported characteristic band	
4.4	Surface roughness of x ZnO-(1- x)SiO ₂ thin films	76
4.5	Optical band gap of $xZnO(1-x)SiO_2$ thin films with their	84
	water contact angle	
4.6	Experimental and reported value wavelength of Zn ²⁺ ions	87
	in silica thin films	

PAGE

LIST OF FIGURES

TIUUNLINU.

TITLE

PAGE

2.1	The static water contact angle	8
2.2	The AFM images of surface roughness and water contact angle	11
	for silica thin films	
2.3	Morphology image of microsized of pores on the surface	12
	of silica thin film	
2.4	FTIR spectra of silica coatings	14
2.5	Transmittance of silica films at different deposition times	15
2.6	The optical transmittance of modified silica films	16
2.7	The optical band gap of silica nanoparticles	17
2.8	Photoluminescence spectra from as grown and annealed	18
	silica nanofibers	
2.9	Photoluminescence spectra of SiO ₂ nanoparticles	19
2.10	The XRD patterns of ZnO films	20
2.11	The XRD pattern of ZnO films of different zinc concentration	20
	of the sol gel	
2.12	FTIR spectra of ZnO/PDMS modified thin films	21
2.13	The optical transmittance of ZnO films	23
2.14	The direct optical band gap of ZnO thin films	23
2.15	PL spectra of ZnO thin films at different concentration of Zn	25
2.16	PL spectra of ZnO films	25

2.17	XRD patterns of ZnO: SiO_2 thin films at different S iO_2 content	26
2.18	XRD patterns of ZnO: SiO ₂ at different annealed temperature	27
2.19	IR spectra of silica gel-zinc acetate sample	28
2.20	Optical transmittance of ZnO: SiO ₂ thin films	29
2.21	The PL emission spectra of ZnO: SiO ₂ thin films	31
2.22	The PL excitation and emission spectra of $ZnO: SiO_2$	32
	nanoparticles	
3.1	The clear color of silica and zinc sol hydrolyzed within 24 hours	35
3.2	The schematic diagram of zinc silica thin film preparations	36
3.3	The schematic diagram of dip coating process for thin films	37
3.4	Dip coater machine	38
3.5	The zinc silica thin film after cooling at room temperature	39
3.6	The dynamic water contact angle	41
3.7	Contact angle measurement	41
3.8	Deriving Bragg's Law using the reflection geometry and	42
	applying trigonometry	
3.9	The X-Ray Diffraction Spectroscopy	43
3.10	The XRD spectra for zinc silica thin films	44
3.11	FTIR spectroscopy working principle	45
3.12	The FTIR instrument	46
3.13	FTIR spectra of silica thin films	46
3.14	Atomic Force Microscopy (AFM) working principle	47
3.15	The Atomic Force Microscopy (AFM)	48
3.16	The AFM image of silica thin films	48
3.17	Field Emission Scanning Electron Microscopy (FESEM) and	49
	Energy Dispersive X-Ray Spectroscopy (EDAX) working	
	principle	
3.18	The Field Emission Scanning Electron Microscopy (FESEM) and	50
	Energy Dispersive X-Ray Spectroscopy (EDAX)	
	measurement	
3.19	The porosity image of silica thin films	51

3.20	The UV-Visible spectrophotometer instrument	52
3.21	Schematic diagram for photoluminescence (PL) process	53
3.22	The luminescence (PL) spectrophotometer instrument	54
4.1	SEM and AFM images of zinc silica thin films	58
4.2	The surface roughness versus thickness of zinc silica films	59
4.3	Contact angle of x ZnO-(1- x)SiO ₂	61
4.4	Graph of water contact angle versus ZnO content	62
4.5	Graph of water contact angle after exposing to humid environment	64
4.6	EDAX spectrum of zinc silica thin films	66
4.7	X-Ray Diffraction (XRD) patterns of x ZnO-(1- x)SiO ₂	67
4.8	FT-Infrared spectra of x ZnO-(1- x)SiO ₂ thin films	69
4.9	Atomic Force Microscopy (AFM) images of <i>x</i> ZnO-(1- <i>x</i>)SiO ₂	75
	thin films	
4.10	Water contact angle versus RMS roughness of x ZnO-(1- x)SiO ₂	76
	thin films	
4.11	Field Emission Scanning Electron Microscopy (FESEM)	78
	image of x ZnO-(1- x)SiO ₂ thin films	
4.12	Optical transmittance of x ZnO-(1- x)SiO ₂ thin films	79
4.13	The absorption coefficient versus photon energy for	80
	xZnO-(1- x)SiO ₂ thin films	
4.14	Graph of $\ln (ahv)$ versus $\ln (hv-E_g)$ for $xZnO-(1-x)SiO_2$ thin	81
	films	
4.15	Graph of $(\alpha hv)^2$ versus photon energy for x ZnO- $(1-x)$ SiO ₂ thin	83
	films	
4.16	Graph of energy band gap (E_g) versus ZnO content	84
4.17	Luminescence spectra of x ZnO-(1- x)SiO ₂	85
4.18	Energy level diagram of modified ZnO in silica thin films	86

LIST OF ABBREVIATIONS

AFM	-	Atomic Force Microscopy	
С	-	Carbon	
CH ₃	-	Methyl	
CH ₃ OH/MeOH	-	Methanol	
EDAX	-	Energy Dispersive X-ray Analysis	
FESEM	-	Fourier Transform Scanning Electron Microscope	
FTIR	-	Fourier Transform Infrared	
H ₂ O	-	Deionized water	
MTMS	-	Methyltrimethoxysilane	
NH ₄ F	-	Ammonium Flouride	
0	-	Oxygen	
PL	-	Photoluminescence	
SEM	-	Scanning Electron Microscope	
SiO ₂	-	Silica / Silicon Dioxide	
Т	-	Transmittance	
UV	-	Ultra violet	
wt%	-	Weight percentage	
WCA	-	Water Contact Angle	
XRD	-	X-Ray Diffraction	
Zn	-	Zinc	
ZnO	-	Zinc oxide	

LIST OF SYMBOLS

٥C	-	Degree celcius
c	-	Speed of light
d	-	Thickness of thin film
D	-	The average size of crystallites
eV	-	Electron Volt
Eg	-	Energy band gap
g	-	Gravity
h	-	Coating thickness
Н	-	Humidity
hv	-	Photon energy of light
ml	-	Milliliter
Μ	-	Molarity
P_0	-	Vapor pressure
r	-	The roughness factor
v	-	Withdrawal Speed
α	-	Absorption coefficient
λ	-	X-ray wavelength
heta	-	Bragg angle
η	-	Viscosity
ρ	-	Density
γ_{LV}	-	Liquid vapour surface tension

CHAPTER 1

INTRODUCTION

1.1 Research Background

Nowadays, hydrophobic surface have gained a lot of attention among researchers in both academic and industrial field. Solid surfaces exhibit contact angle more than 90° was called hydrophobic surface while contact angle more than 150° known as superhydrophobic surface. The hydrophobic surfaces have great interest because their potential applications in diverse field such as water repellent and stainless coating, anti-contamination, laboratory-on-a-chip devices and self-cleaning properties for solar cells, building walls and roof glasses, satellite dishes and photovoltaics.

The well-known example for hydrophobic self-cleaning properties is lotus leaves with scientific name '*Nulembo nucifera*'. In 1997, Barthlott and Neinhuis investigated the hydrophobicity and surface roughness of Lotus leaves act as selfcleaning properties. The Lotus leaves show the bigger pores size in the range of 20– 40 μ m using electron micrograph and have smaller surface roughness on the surface. Numerous researchers confirmed that the combination of micro and nano-scale of surface roughness can produce higher hydrophobicity with low surface energy and low sliding angle contributed for self-cleaning applications. In order to mimicking Lotus leaf behavior, different chemical methods are investigate for the synthesis of water repellent surfaces such as air brushing (Tsai *et al.*, 2011), sol gel method (Rao *et al.*, 2006), layer-by-layer assembly technique (Bravo *et al.*, 2007 and Zhang *et al.*, 2007), and combustion synthesis (Chakradhar *et al.*, 2011). However, a few methods can produce good and transparent thin films with simple and low cost processing method.

Furthermore in the making material for self-cleaning applications, sol gel method is one of the most efficient methods for preparation of transparent water repellent materials. Sol gel makes a promising in producing precise ability in controlling the silicate (SiO₂) microstructure with properties that cannot be achieved by other materials. Rao and co-workers have done variety investigation for transparent silica thin films hydrophobic coatings on the glass surfaces. Mahadik and colleagues (2010) has developed transparent silica superhydrophobic coatings using methylmethoxysilane (MTMS) by sol gel method. Besides, silica base nanocomposite films offer a better control of the shape, size and properties for quantum confinement of semiconductor crystallites such as luminescence.

Zinc oxide (ZnO) is a wide band gap (3.37 eV) semiconductor which also can be made transparent thin films for the whole visible range. Moreover, ZnO films allows in producing a great luminescent material at room temperature. For example, the optical properties of ZnO dispersed into SiO₂ shows good photoluminescence properties where ZnO-SiO₂ emits violet, blue, green and red band emission. After all, less study has been made for hydrophobic properties using zinc oxide materials whereas zinc oxide promising good hydrophobic properties for the thin films. In the present research work, an easy and efficient method will be prepare to synthesize hydrophobic zinc silica thin films with high transparency and good luminescence by simple dip coating technique using sol gel method exhibiting the self-cleaning behavior. These films will be deposited with different composition of zinc materials between 0 to 20 wt% keeping the other deposited parameters fixed at certain values. The effects of zinc composition on silica thin films will change the microstructural and the optical properties which produced a good quality of films.

1.2 Problems of Statement

Although properties of zinc silica thin films have been studies and attracted a number of researchers because their wide-ranging in industrial and technical applications, most researchers were more interested to study the structural and optical properties of the zinc silica thin films without more specific studies on hydrophobicity characteristic of the films (Hong *et al.*, 2010; Zhang *et al.*, 2011; Mohamed *et al.*, 2012). Therefore, an investigation on the hydrophobic characteristic of ZnO-SiO₂ thin films will be carried out and the results of this study are presented in this thesis.

1.3 Objectives of the study

The objectives of the study are as below:

(i) To determine the influence of ZnO content on the hydrophobic properties of silica thin films.

- (ii) To determine the influence of ZnO content on the phase formation and structure feature of silica thin films.
- (iii) To determine the influence of ZnO content on the surface morphology and topology of silica thin films.
- (iv) To determine the influence of ZnO content on the optical and luminescent properties of silica thin films.

1.4 Scope of the study

In order to achieve the objectives of the study, the scope of the study as follows:

- (i) The thin film samples based on composition of *x*ZnO-(1-*x*)SiO₂ with (0 ≤ *x* ≤ 20 wt%) have been prepared using sol gel technique and dip coating technique. In this case, silica thin films sample also be prepared and can be used as reference.
- (ii) The water contact angle of zinc silica thin films will be measured by water contact angle meter or goniometer.
- (iii) The phase formation and structure feature was conducted by X-Ray diffraction (XRD), Fourier Transform Infrared (FTIR), and Energy Dispersive X-Ray Spectroscopy (EDAX).
- (iv) The surface morphology and topology of zinc silica thin films will be measured using Atomic Force Microscopy (AFM) and Field Emission Scanning Electron Microscope (FESEM).
- (v) The optical and luminescence properties of zinc silica thin films will be measured using UV-Visible and photoluminescence spectroscopy (PL).

1.5 Significance of Study

The study focuses on the influence of ZnO content through hydrophobic silica thin films properties. Due to limited studies on luminescence properties in hydrophobic thin films, this present study has been developed because the promising in luminescence performance. The study of zinc silica thin films is important to determine the influence ZnO content on the surface structure of the films. Furthermore, the sol gel technology considered to be among the most effective method for the better control of shape, size and properties of hydrophobic thin films. By the end of this research, zinc silica thin films expected to have excellent hydrophobic properties with high transparency and high luminescence properties.

REFERENCES

- Barthlott, W., and Neinhuis, C. (1997). Purity of the Sacred Lotus or Escape from Contamination in Biological Surfaces. *Planta*, 202, 1–8.
- Bautista, M.C., and Morales, A. (2003). Silica Antireflective Films on Glass Produced by the Sol–gel Method. *Solar Energy Materials & Solar Cells*, 80, 217–225.
- Bhattacharjee, B., Ganguli, D., Chaudhuri, S., and Pal, A.K. (2002). Synthesis and Optical Characterization of Sol–gel Derived Zinc Sulphide Nanoparticles Confined in Amorphous Silica Thin Films. *Materials Chemistry and Physics*, 78, 372–379.
- Bravo, J., Zhai, L., Wu, Z., Cohen, R.E., and Rubner, M.F. (2007). Transparent Superhydrophobic Films Based on Silica Nanoparticles. *Langmuir*, 23, 7293-7298.
- Chakrabarti, S., Das, D., Ganguli, D., and Chaudhuri, S. (2003). Tailoring of Room Temperature Excitonic Luminescence in Sol–gel Zinc Oxide–silica Nanocomposite Films. *Thin Solid Films*, 441, 228–237.
- Chakradhar, R.P.S., Kumar, V.D., Rao, J.L., and Basu, B.J. (2011). Fabrication of Superhydrophobic Surfaces Based on ZnO–PDMS Nanocomposite Coatings and Study of Its Wetting Behavior. *Applied Surface Science*, 257, 8569–8575.

- Chang, K.C., Chen, Y.K., and Chen, H. (2008). Fabrication of Highly Transparent and Superhydrophobic Silica-based Surface by TEOS/PPG Hybrid with Adjustment of the pH Value. *Surface & Coatings Technology*, 202, 3822–3831.
- Chen, Y.K., Chang, K.C., Wu, K.Y., Tsai, Y.L., Lu, J.S., and Chen, H. (2009). Fabrication of Superhydrophobic Silica-based Surfaces with High Transmittance by Using Tetraethoxysilane Precursor and Different Polymeric Species. *Applied Surface Science*, 255, 8634–8642.
- Chen. (2002). Size Effect on the Photoluminescence Shift in Wide Band-Gap Material: A Case Study of SiO₂-Nanoparticles. *Tamkang Journal of Science and Engineering*, 5(2) 99-106.
- Dai. L., Chen, X.L., Jian, J.K., Wang, W.J., Zhou, T., and Hu, B.U. (2003). Strong Blue Photoluminescence from Aligned Silica Nanofibers. *Applied Physics A*, 76, 625– 627.
- Ferrari, M., Ravera, Rao, S., and Liggieri, L. (2006). Superhydrophobic Surfaces. *Appl. Phys. Lett.*, 89, 053104.
- Gaudon, A., Lallet, F., Boulle, A., Lecomte, A., Soulestin, B., Guinebretie, R., and Dauger, (2006) From Amorphous Phase Separations to Nanostructured Materials in Sol–gel Derived ZrO₂:Eu₃₊/SiO₂ and ZnO/SiO₂ Composites. *Journal of Non-Crystalline Solids*, 352, 2152–2158.
- Hagura, N., Takeuchi, T., Takayama, S., Iskandar, F., and Okuyama, K. (2011). Enhanced Photoluminescence of ZnO–SiO₂ Nanocomposite Particles and the Analyses of Structure and Composition. *Journal of Luminescence*, 131, 138–146.

- Hamedani, N.F., and Farzaneh, F. (2006). Synthesis of ZnO Nanocrystals with Hexagonal Structure in Water Using Microwave Irradiation. *Journal of Science*, 17 (3) 231-234.
- He, H., Wang, Y., and Zou, Y. (2003). Photoluminescence Property of ZnO–SiO₂
 Composites Synthesized by Sol–gel Method. J. Phys. D: Appl. Phys. 36, 2972–2975.
- Hong, J.H., Wang, Y.F., He, G., and Wang, J.X. (2010). The Effect of Calcination Temperature on the Photoluminescence from Sol–gel Derived Amorphous ZnO/Silica Composites. *Journal of Non-Crystalline Solids*, 356, 2778–2780.
- Hsieh, P.T., Chen, Y.C., Kao, K.S., and Wang, C.K. (2007). Structural Effect on UV
 Emission Properties of High-quality ZnO Thin Flms Deposited by RF Magnetron
 Sputtering. *Physica B*, 392, 332–336.
- Kavale, M.S., Mahadik, D.B., Parale, V.G., Wagh, P.B., Gupta, S.C., Rao, A.V., and Barshili, H.C., (2011). Optically Transparent, Superhydrophobic Methyltrimethoxysilane Based Silica Coatings without Silylating Reagent. *Applied Surface Science*, 1-5.
- Kumar, P.S., Raj, A.D., Mangalaraj, D., and Nataraj, D. (2010). Hydrophobic ZnO Nanostructured Thin Films on Glass Substrate by Simple Successive Ionic Layer Absorption and Reaction (SILAR) Method. *Thin Solid Films*, 518, 183–186.
- Kumar, V.V.S, Singh, F., Ojha, S., and Kanjilal, D. (2012). Influence of Zn Concentration on the Size and Optical Properties of ZnO Nanocrystals in Silica Matrix Grown by Rf Co-sputter Deposition. *Advanced Materials Letters*, 1-13.

- Mahadik, S.A., Kavale, M.S., Mukherjee, S.K., and Rao, A.V. (2010). Transparent Superhydrophobic Silica Coatings on Glass by Sol–gel Method. *Applied Surface Science*, 257, 333–339.
- Martins, R.M.S., Musat, V., Mücklich, A., Franco, N., and Fortunato, E. (2010). Characterization of Mesoporous ZnO:SiO₂ Films Obtained by the Sol–gel Method. *Thin Solid Films*, 518, 7002–7006.
- Meier, C., Gondorf, A., Luttjohann, S., Lorke, A., and Wiggers, H. (2007). Silicon Nanoparticles: Absorption, Emission, and The Nature of The Electronic Bandgap. J. Appl. Phys., 101, 103-112
- Minglin M., and Randal M. Hill. (2006). Superhydrophobic Surfaces. *Current Opinion* in Colloid & Interface Science, 11, 193–202.
- Mohamed, R.M., Baeissa, E.S., Mkhalid, I.A., and Al-Rayyani, M.A. (2012). Optimization of Preparation Conditions of ZnO–SiO₂ Xerogel by Sol–gel Technique for Photodegradation of Methylene Blue Dye. *Appl Nanosci*, 10, 1-7.
- Musat, V., Fortunato, E., Petrescu, S., and Botelho do Rego, A.M. (2008). ZnO/SiO₂ Nanocomposite Thin Films by Sol–gel Method. *Phys. Stat. Sol.*, 205 (8) 2075–2079.
- Nava, R., Halachev, T., Rodriguez, R., and Castaño, V.M. (2002) Synthesis, Characterization and Catalytic Behavior of a Zinc Acetate Complex Immobilized on Silica-gel. *Applied Catalysis A: General*, 231, 131–149.
- O'Brien, S., Koh, L.H.K., and Crean, G.M. (2008). ZnO Films Prepared by a Single Step Sol Gel Process. *Thin Solid Films*, 516, 1391–1395.

- Rao, A.P., Rao, A.V., and Pajonk, G.M. (2006). Hydrophobic and Physical Properties of The Ambient Pressure Dried Silica Aerogels with Sodium Silicate Precursor Using Various Surface Modification Agents. *Applied Surface Science*, 253, 6032–6040.
- Rao, A.V., Gurav, A.B., Latthe, S.S, Vhatkar, R.S., Imai, H., Kappenstein, C., Wagh,
 P.B., and Gupta, S.C. (2010). Water Repellent Porous Silica Films by Sol–gel
 Dip Coating Method. *Journal of Colloid and Interface Science*, 352, 30–35.
- Rao, A.V., Latthe, S.S., Nadargi, D.Y., Hirashima, H., and Ganesan V. (2009).
 Preparation of MTMS Based Transparent Superhydrophobic Silica Films by Solgel Method. *Journal of Colloid and Interface Science*, 332, 484–490.
- Sengupta, J., Sahoo, R.K., Bardhan, K.K., and Mukherjee, C.D. (2011). Influence of Annealing Temperature on the Structural, Topographical and Optical Properties of Sol–gel Derived ZnO Thin Films. *Materials Letters*, 65, 2572-2572.
- Shan, F.K., Liu, G.X., Lee, W.J., Lee, G.H., Kim, I.S., Shin, B.C., and Kim, Y.C. (2005). Transparent Conductive ZnO Thin Films on Glass Substrates Deposited by Pulsed Laser Deposition. *Journal of Crystal Growth*, 277, 284–292.
- Sunetra, L. D., Sanjay, S. L., Charles, K., Pajonk, G.M, Ganesan, V., Rao, A.V., Wagh, P.B., and Gupta, S.C. (2010). Transparent Water Repellent Silica Films by Solgel Process. *Applied Surface Science*, 256, 3624–3629.
- Tsai, M.Y., Hsua, C.C., Chena, P.H., Lin, C.S., and Chen, A. (2011). Surface Modification on A Glass Surface with A Combination Technique of Sol–gel And Air Brushing Processes. *Applied Surface Science*, 257, 8640–8646.

- Vinayak, V.G., Uzma, K.H.B., Sanjay, S.L., Satish, A.M., and Rao, A.V. (2011). Selfcleaning Silica Coatings on Glass by Single Step Sol-gel Route. *Surface and coatings technology*. 205 (23) 5338-5344.
- Vishwas, M., Rao, K,N., Gowda, K.V.A., Chakradhar, R.P.S. (2010). Effect of Sintering on Optical, Structural and Photoluminescence Properties of ZnO Thin Films Prepared by Sol–gel Process. *Spectrochimica Acta Part A*, 77, 330–333.
- Willander, M., Nur, O., Sadaf, J.R., Qadir, M.I., Zaman, S., Zainelabdin, A., Bano, N., and Hussain, I. (2010). Luminescence from Zinc Oxide Nanostructures and Polymers and their Hybrid Devices. *Materials*, 3, 2643-2667.
- Yildirim, M.A., Ates, A. (2010). Influence of Film Thickness and Structure on the Photo-response of ZnO Films. *Optics Communication*, 283, 1370-1377.
- Zhang, X., Shi, F., Niu, J., Jiang, Y., and Wang, Z. (2007). Superhydrophobic Surfaces: from Structural Control to Functional Application. *J. Mater. Chem.*, 18, 621–633.
- Zhang, Y.D., Wang, L.W., Mi, L.W., Yang, F.L., and Zheng, Z. (2011). Silica-controlled Structure and Optical Properties of Zinc Oxide Sol–gel Thin Films. J. Mater. Res., 26 (7) 882-888.