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ABSTRACT 

Nitride semiconductor compounds have been occupying the center of scientific 

attention due to their extraordinary physical properties for many years.  In this study, the 

structural, electronic and optical properties of  aluminium nitride (AlN), gallium nitride 

(GaN), indium nitride (InN) and  boron nitride (BN) have been investigated by using full 

potential linear augmented plane waves plus local orbital’s method as embodied in 

WIEN2k code within the framework of density functional theory. These properties of 

the above-mentioned  semiconductor compounds within two phases (wurtzite and zinc 

blende) have been calculated by the  local density approximation, generalized gradient 

approximations and the recently developed modified Becke and Johnson exchange 

potential plus local-density approximation methods. In this study, the calculations show 

that the present results of the above said compounds for the lattice constant, bulk 

modulus and its pressure derivative are consistent with the experimental results. The 

energy band gaps obtained from modified Becke and Johnson exchange potential plus 

local-density method are in very close agreement with the experimental results. 

Moreover, modified Becke and Johnson exchange potential plus local-density 

approximation method shows improvement over the local density approximation and 

generalized gradient approximation. As for optical properties, it was found that the local 

density approximation and generalized gradient approximation results of static dielectric 

constant, static refractive index and reflectivity are in agreement with the experimental 

values.  
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ABSTRAK 

Semikonduktor sebatian nitrida telah menjadi tumpuan saintifik bertahun 

lamanya disebabkan oleh sifat fizikalnya yang luar biasa. Dalam kajian ini, ciri struktur, 

elektronik dan optik aluminium nitrida (AlN), gallium nitrida (GaN), indium nitrida 

(InN) dan  boron nitrida (BN) telah dikaji menggunakan kaedah keupayaan penuh 

gelombang satah linear mengembang berserta orbit setempat  seperti terdapat pada kod 

WIEN2k dalam rangka kerja teori fungsi ketumpatan.  Ciri sebatian semikonduktor yang 

tersebut di atas dalam dua fasa  (wurzit  dan zink blend) telah dikira menggunakan 

penghampiran ketumpatan setempat, penghampiran kecerunan teritlak  dan ubahsuai 

pertukaran keupayaan kaedah yang baru dibangunkan iaitu ubahsuai pertukaran 

keupayaan Becke dan Johnson berserta penghampiran ketumpatan setempat. Dalam 

kajian ini, dapatan menunjukkan hasil terkini untuk pemalar kekisi, modulus pukal dan 

terbitan tekanan untuk sebatian yang tersebut di atas adalah konsisten dengan hasil 

kajian eksperimen. Jurang jalur tenaga yang diperoleh daripada kaedah pertukaran 

keupayaan Becke dan Johnson diubahsuai berserta penghampiran ketumpatan setempat 

adalah hampir sama dengan hasil eksperimen. Malahan ubahsuai pertukaran keupayaan 

Becke dan Johnson berserta ketumpatan setempat menunjukkan peningkatan daripada 

penghampiran ketumpatan setempat dan penghampiran kecerunan teritlak. Untuk ciri 

optik pula, didapati hasil penghampiran ketumpatan setempat dan penghampiran 

kecerunan teritlak untuk  pemalar dielektrik, indeks biasan statik dan pantulan adalah 

sama dengan hasil kajian eksperimen.  
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CHAPTER   1 

INTRODUCTION 

1.1 Background of Research 

III–V compound semiconductors have fascinated significantly due to their 

very inimitable physical properties and applications. Properties of semiconductors 

belonging to III–V group are under extensive studied due to their use in electronic 

and optoelectronic devices [1, 2]. Due to  a wide range of exceptional physical 

properties, its different compounds have been under experimental and theoretical 

studies for a long time [3-5]. To comprehend the physical properties of such 

compounds a lot of research has been carried out but there are yet many 

characteristics needs clarity, like electronic band gap disagreement among different 

studies [6-10]. Detailed computational/theoretically study of structural, electronic 

and optical properties are very vital.  

Advanced high-speed computers along with computational methods based on 

first principles made it possible to calculate the structural and electronic properties of 

solids with accuracy and facilitate to interpret and predict properties, which were 

experimentally not easy to measure [11], and opened a new era in the field of 

condensed matter physics. From the last few decades, “first principles calculations 
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based on density functional theory (DFT) [12]  have become an important part of 

research in material science and have  performed using the DFT within the local 

density approximation (LDA) [13] or generalized gradient approximation (GGA-

PBE)” [14]. Most of the theoretical studies were carried out using pseudo-potential 

[15] or FP-LAPW (one of the most accurate calculation approach for the investigate 

of crystalline solids) methods. To study the structural properties of solids, LDA and  

GGA approximation works very well but  not suitable for band gap calculations as 

these  underestimate the band gap energy values. To overcome this short coming a 

new method/approach known as modified Becke-Johnson (mBJ) was introduced by 

Tran and Blaha [16] that explains the electronic properties of different solids 

successfully will be applied.  

The main interest of this research is to carry out theoretical investigations of 

III-nitrides compounds such as AlN, GaN, InN, and BN with mBJ method for the 

electronic and optical properties that will provide very useful information for 

practical application of said materials in electronic and microelectronics industry. 

1.2 Properties and Applications 

Study of structural, electronic and optical properties of semiconductor is one 

of the most active and emerging frontiers in physics and material science. In the last 

decade, there has been a substantial progress in generation, characterization and 

understanding of semiconductors. This has opened a new door after several 

breakthroughs (theoretically/experimentally) sought to build better materials for 

novel device applications, by controlling the structural, electronic, optical and other 

distinguishing physical properties. At present, III-V compound semiconductors 

consider as the material basis. Binary compounds (III-nitrides) belonging to III-V 
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semiconductors family  are under extensive investigation for a long time[1, 2] due to 

their exceptional physical properties such as very short bond lengths, low 

compressibility, low dielectric constant, large bulk moduli, wide band gaps, high 

ionicity, high value of thermal conductivity (which make them suitable material for 

high powered devices) [17] and melting point, etc., [1, 2, 18-21] and the extreme 

hardness of cubic phase of BN [21].  

These properties largely stem from their large electronegativity difference 

between group III and V elements, leading to very strong chemical bonds [19] ( 

which impart structural stability under relatively high mechanical stress), making 

them ideal building blocks for many applications in optoelectronic devices 

specifically in a wavelength range from blue to ultraviolet such as blue light emitting 

diodes (LEDs), laser diodes, solar blind photo detectors [7, 22], as well as for high-

power, high-temperature, and high-frequency devices [20, 23, 24].  

On the other hand, the smaller structure of a nitrogen atom in formation of the 

short bonds, ultimately results in significantly smaller lattice constants [25] (by 

~20% less than other III-V semiconductors). Due to small atomic volumes, these 

compounds may exhibit many of their physical properties similar to other wide gap 

semiconductors such as diamond. Nevertheless, the understanding of the 

fundamental physical properties leading to applications is still not satisfactory. One 

of the reasons consists of insufficient knowledge of the structural and electronic 

properties of III-nitride compounds. In addition, III-nitride compounds crystallize in 

wurtzite , Zinc blende e and rocksalt phases at different pressures and temperatures. 

AlN, GaN and InN are naturally found in wurtzite  phase and BN in Zinc blende e at 

normal temperature. Due to inimitable physical properties and device applications, 

there each phase is the focus of theoretically and experimental studies. 
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Despite many different aspects between Zinc blende e and its wurtzite  

counterpart (such as low enthalpy, higher symmetry, and appropriate n-type, p-type 

doping), it has recently become possible using the most rapidly flourishing 

(epitaxial) techniques to crystallize them in a stable form with cubic symmetry. Yang 

et al. [26] successfully applied this approach to grow cubic GaN on the GaAs (001) 

surface and obtained better optical properties compare to the wurtzite  structures. 

During the last two decades, most of the advancements in technological application 

of semiconductors have been achieved owing to advances in epitaxial techniques.  

Nevertheless, the experimental techniques are usually costly and provide insufficient 

theoretical insight to build better materials for novel device applications. 

 Therefore, for inexpensive and rapid development, theoretical studies are 

highly successful in predicting/investigation new material for useful practical 

application. Although studies related to III-V nitrides started in early seventies of last 

century [1, 2], considerable attention of researchers was caught in 1990s with the 

introduction of blue light emitting diodes. Moreover,  due to their incomparable 

physical properties, is also viewed promising candidate in the future optoelectronic 

device applications like “high-density data devices and undersea optical 

communication systems” [27].  

1.3 Research Objectives 

The main interest of this research is to study the structural, electronic and 

optical properties of III-Nitrides binary compounds. The objectives of this research 

can be summarized as the following: 
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1. Study of structural properties of XN (X = Al, Ga, In and B)      

compounds.                

2. Study of electronic properties of XN (X = Al, Ga, In and B) 

compounds.                            

3. Study of optical properties of XN (X = Al, Ga, In and B) compounds.               

1.4  Scope of Study 

The scope of this research is as the following:   

Density functional theory is used to compute and simulate the electronic and 

structural properties of above-said compounds within Zinc blende  and wurtzite  

structures by the following techniques: 

1. The local density approximation (LDA) and the generalized gradient 

approximation (GGA-PBE) are used to calculate ground-state 

energies, the lattice parameters, the bulk modulus and its derivatives, 

the band structures and optical properties.  

 

2. A new method/approach known as modified Becke-Johnson (mBJ) is 

used as a couple with LDA (mBJ-LDA) to investigate the band 

structures and optical properties. 
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1.5 Outline of  Thesis  

A general background of study, brief introduction to the properties and 

applications of III-nitride compounds are discussed in Chapter 1. This is followed by 

objectives and scope of the study. There are many approaches to study the electronic 

structures of many body systems. Density functional theory (DFT) is one of such  

flexible method. Its theory is discussed in the Chapter 2. The computational details, 

which are utilized in this study, are described in Chapter 3. Following this, Chapter 4 

is about results and discussion. Tables and figures of the structure, electronic and 

optical properties of XN (X = Al, Ga, In and B) compounds are showed and the 

results are also discussed and interpreted in this Chapter. Finally, Chapter 5  is the 

conclusion. Theories and results discussed in the previous chapters are summarized 

and concluded here. Furthermore, suggestions are given to perform  simulation better 

and more complete. 
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