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ABSTRACT

This study proposes on a combine methodology that exploits the Holts-

Winter (HW) model and the Support Vector Machines (SVM) model in forecasting

time series. Problems of forecasting using time series data have been and still being

addressed at every sphere of research using different approaches. The performance of

the forecast was compared among the three models, the HW model, the SVM model

and the combine model (HW and SVM). Four different data sets namely, airline

passengers’ data, machinery industry production data, clothing industry data and

sugar production data were considered in the study. The statistical measures such as

mean squared error (MSE), mean average error (MAE) and correlation coefficient,

R, were used to evaluate the performance of the propose model. The result of this

study indicated that the combine model shows an improvement of 149.3% over HW

model and 35.9% improvement over the SVM model for the airline passengers’ data.

The result of the machinery industry presented that the combine model shows an

improvement of 93.3% over HW model and 42.8% improvement over the SVM

model. In the case of the clothing industry the result shows the combine model gives

an improvement of 61.6% over HW model and 12.0% improvement over SVM

model. Lastly, with respect to the sugar production, the result shows that the combine

model indicated an improvement of 34.4% over HW model and 25.1% improvement

over SVM model. Therefore the results of the experiments suggest that the proposed

combine model is more reliable in time series when compared with the individual

models.
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ABSTRAK

Kajian ini mencadangkan satu gabungan kaedah yang mengeksploitasi model

Holts – Winter (HW) dan model Support Vector Machines (SVM) dalam peramalan

siri masa. Masalah ramalan menggunakan data siri masa telah dan masih ditangani di

setiap bidang penyelidikan yang menggunakan pendekatan yang berbeza. Prestasi

ramalan telah dibandingkan antara tiga model, model HW, model SVM dan model

gabungan (HW dan SVM). Empat set data yang berbeza iaitu, data penumpang

syarikat penerbangan, data pengeluaran industri jentera, data industri pakaian dan

data pengeluaran gula telah dipertimbangkan dalam kajian. Pengukuran statistik

seperti min ralat kuasa dua (MSE), min ralat purata (MAE) dan pekali korelasi, R,

digunakan untuk menilai keupayaan model yang dicadangkan. Hasil kajian ini

menunjukkan bahawa gabungan model menunjukkan peningkatan sebanyak 149.3%

berbanding model HW dan peningkatan 35.9% berbanding model SVM untuk

penumpang syarikat penerbangan. Hasil daripada industri jenteramendapati model

gabungan menunjukkan peningkatan sebanyak 93.3% berbanding model HW dan

peningkatan 42.8% berbanding model SVM. Dalam kes industri pakaian, hasil kaj

ian menunjukkan bahawa model gabungan memberikan peningkatan sebanyak

61.6% berbanding model HW dan peningkatan 12.0% berbanding model SVM.

Akhir sekali, berkaitan dengan pengeluaran gula, hasilnya menunjukkan bahawa

model gabungan menunjukkan peningkatan sebanyak 34.4% berbanding model HW

dan peningkatan 25.1% berbanding model SVM. Oleh itu, keputusan kajian

menunjukkan bahawa model gabungan yang dicadangkan adalah lebih dipercayai

dalam siri masa berbanding dengan model individu.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Time series forecasting is an important practical problem with a diverse range

of applications in many observational disciplines, such as finance, economics,

meteorology, biology, medicine, hydrology, oceanography, physics, engineering, and

geomorphology. Forecasting can assist them to make a better development and

decision-making for most of the organization. The identification of highly accurate

and reliable time series forecasting models for future time series is a precondition for

successful planning and management for applications in variety of areas.

Trend and seasonal variations are the two most commonly encountered

phenomena in many sectors of business and economics. Seasonality is periodic and

recurrent pattern caused by factors such as weather, holidays, repeating promotions

as well as the behavior of economic agents.

A seasonal time series is assumed to be a series which is influenced by

seasonal factors. A seasonal factor is a characteristic of time series in which the data

experiences regular and predictable changes which reoccur every calendar year.

Example of this are the annual data of monthly industrial production, monthly airline

passengers’ data. Seasonal variation on the other hand is a component of a time

series which is a repetitive movement around the trend line in one year or less. Some

organizations facing seasonal variation should be interested in knowing their
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performance relative to the normal seasonal variation. Organizations that are affected

by seasonal variation need to identify and measure this seasonality to help in

planning for temporal increase or decrease in organizational productions (Dong et al

2002).

A very difficult task for any organization is to forecast using the seasonal

time series data. Accurate forecasting of seasonal and trend time series is very

important for effective decisions in planning, marketing, production, personnel,

inventory control and other related decision making activities. Problems of

forecasting using seasonal time series data have been addressed and still being

addressed by different researchers using different approaches.

In this chapter, we will give a brief discussion on the research background of

seasonal time series, in addition to the problem statement along with the objectives

and scope of the current study. Further to that we will discuss the significance of the

study of seasonal time series to organizations.

1.2 Background of the Study

Modeling seasonal and trend time series has been one of the main researches

for several decades. Thus, various kinds of forecasting methods have been developed

by many researchers and business practitioners. Of the various forecasting models,

the work by Box and Jenkins (1976) on the seasonal ARIMA model has the most

significant and popular on the practical applications to seasonal time series modeling.

This model has performed well in many real world applications and is still one of the

most widely used seasonal forecasting methods. The popularity of ARIMA model is

due to its statistical properties as well as the well-known Box-Jenkins methodology

in the building process. Although ARIMA models are quite flexible in that they can

represent several different types of time series, seasonal or non-seasonal time series,

their major limitation is the pre-assumed linear form of the model. The ARIMA
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model is, therefore, unable to find subtle nonlinear patterns in the time series data.

Obviously, the approximation of linear models to complex real-world problem is not

always satisfactory (Zhang, 2003).

Recently, artificial neural network (ANN) models have been extensively

studied and shown their nonlinear modeling capability in time series forecasting.

Being a flexible modeling tool, ANN can in principle, model any type of relationship

in the data with the high accuracy. One of the most important advantages of ANN is

their flexible nonlinear modeling in solving many complex real world forecasting

problems. In addition, although ANN is inherently nonlinear models, the model is

capable of modeling linear process as well (Zhang, 1988).

Although ANN has been successfully used for numerous forecasting

applications, several issues in ANN model building still have not been solved. One of

the most critical issues is how to select appropriate network architecture for finding

the good forecasting. Due to a typically large number of parameters to be estimated,

ANN often suffers overfitting problems. That is, ANN sometimes can fit in-sample

data vary well but forecast poorly out of sample (Zhang, 2001). ANN is also used to

study seasonal time series, although many of the studies reach different conclusions

(Hamzacebi 2008).

More advanced, Artificial Intelligence (AI) is support vector machine (SVM)

is proposed by Vapnik and his co-workers in 1995 through statistical learning theory,

has gained the attention of many researchers. SVM is nonlinear model which is one

of the soft computational techniques is a powerful methodology and has been

successfully applied to solve various problems (Thiessen Wang et al. 2009; Asefa et

al. 2006; Lin et al. 2006; Liong and Sivapragasam 2002; Yu et al. 2006). The

standard SVM is solved using quadratic programming methods. This method needs

very few assumptions to learn patterns of input variables for prediction variables

since it deals with nonlinear models. According to Auria and Moro (2008) SVM on

the other hand has advantage of not necessarily creating dummy variables while

dealing with categorical variables but also there is no limit in the number of
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independent variables. Han et al. (2007) stated that the foundation of SVMs was

developed by Vapnik, who was a Russian Mathematician at the beginning of 1960s

popularly referred to as “Vapnik 1965” whose principle was based on the structural

Risk Minimization principle from the statistical learning theory and this gained

popularity due to its many attraction features and promising empirical performance.

Han et al (2007) also viewed that SVM has been proved to be effective in

classification by many researchers in different fields of Science, Engineering,

Medical and Financial studies (Vapnik 1998) and extended to the domain of

regression problems, (Kecman 2001).

SVM offers remarkable generalization performance in many areas such as

pattern recognition, text classification and regression estimation (Asefa et al 2006)

and also that some researchers deal with the application of SVM in time series

forecasting. According to Feng et al (2010) in recent years, SVM has become a

popular tool for pattern recognition and machine learning. SVM is used for

classification problems and its goal is to optimize ‘‘generalization’’ (Cristianini et al

2002).  However, applications of the SVM models in seasonal time series data have

not been widely studied (Saeid et al, 2009). Therefore, this study attempts to use the

SVM model in the seasonal time series forecasting problems.

Although the SVM models achieve success in time series forecasting, they

have some disadvantages. Since the seasonal time series is a complex and nonlinear

problem, there exist some linear and nonlinear patterns in the time series

simultaneously. It is not sufficient to use only a nonlinear model for time series

because the nonlinear model might miss some linear features of time series data. In

such situations, it is necessary to combine the linear model and nonlinear model for

seasonal time series forecasting.

In this study, the exponential smoothing model rather than other linear

models such as ARIMA is chosen as SVM model’s complement for several reasons.

First of all, the major advantage of exponential smoothing methods is that they are

simple, intuitive, and easily understood. These methods have been found to be quite
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useful for short term forecasting of large numbers of time series. At the same time,

exponential smoothing techniques have also been found to be appropriate in such

applications because of their simplicity. Second, the exponential smoothing model

has less technical modeling complexity than the ARIMA model and thus makes it

more popular in practice.

1.3 Problem Statement

Exponential smoothing models have been found to be amongst the most

effective forecasting models. It has been applied in many fields of human endeavors.

However, it suffers from the limitation of being able to capture only linear features in

time series data. Support vector machines (SVM) on the other hand though new has

made remarkable in roads in the field of time series forecasting.

The current trend in forecasting practice is the combination of the two or

more technique into one. This is done to harness the advantages of the techniques

involved. It is this trend that has motivated this study in which we propose to develop

a combine model which is a mix of Holt winters (HW) and SVM to help overcome

the shortcomings of using either of the two techniques.

1.4 Research Questions

Therefore, our main research questions can be summarized as follows:

(a) How reliable and accurate are Holts’ winter and SVM predictions for time

series forecasting?

(b) When should each of the methods (exponential smoothing and SVM) be

preferred, and what are the strengths and weaknesses of each procedure?
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(c) Can we increase the accuracy and reliability of predictions in seasonal time

series forecasting by combine exponential smoothing and SVM?

We therefore, propose in this study to apply a forecasting model that

combines the traditional technique exponential smoothing with intelligent technique-

SVM using time series to provide a better forecast.

1.5 Objectives

This research is aimed at studying seasonal time series and to develop a

model which will be used to make forecast for an organization. Other objectives are:

i. To study the time series by (a) obtaining Holts’ Winter model and (b) the

SVM model of the time series data.

ii. To design and build a combine model for forecasting the time series data.

iii. To compare the forecasting performance of the proposed model with the

individual HW and SVM models for the time series involving airlines,

machinery, clothing and sugar data.

1.6 Scope of the Study

In this study, four different data involving airlines, machinery, cloth and

sugar are analyzed to obtain the most efficient model to enhance the understanding of

forecasting with time series using H-W and SVM to improve the existing methods.

The forecasting performances of the models are evaluated using the performance

measures like MSE, MAE and R (which is the correlation coefficient).
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1.7 Significance of the Study

The study of seasonal time series is very important in achieving a good and

reliable forecast so as to make a significant impact for future plan of organizational

decisions. To study the behaviour of different time series data will also enable the

decision makers to improve the organization in the areas of management and policy

formulation.

1.8 Summary of the Research

The purpose of this work is to conduct a study to build a model for

forecasting the time series data and compare the performance of this model with the

H-W and SVM models for the most efficient. For this purpose, the data used are

airlines, machinery, cloth and sugar.

Chapter 1 gives the introduction of this study which involves the framework;

it begins with the introduction of seasonal time series data and the models to be

included, the background of the study, problem statement, aim and objectives, scope

of the study and the significance of the study. Chapter 2 presents the literature review

in which the works of other researchers involving time series; H-W, SVM and

combine methods are reviewed. Chapters 3 and 4 discussed the methodology which

involves the various methods used in the study and the data analysis which describes

the analysis carried out in the study respectively. Chapter 5 spelt out the results and

the various discussions arising from the analysis and finally chapter 6 gave the

conclusion of the study and the possible direction in the future research.
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