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ABSTRACT 

 

 

 

 

The motion of a viscous fluid caused by the oscillations of a vertical plate is 

important in many applied problems such as acoustic streaming around an oscillating 

body and an unsteady boundary layer with fluctuations. In boundary layer, free 

convection flow is a motion that results from the interaction of gravity with density 

differences within a fluid. These differences occur due to temperature or 

concentration gradients or due to their composition. The situation where the heat be 

transported to the convective fluid via a bounding surface having finite heat capacity 

is known as Newtonian heating (or conjugate convective flows). This configuration 

occurs in convection flows set up when the bounding surfaces absorb heat by solar 

radiation. In this thesis, the unsteady free convection flow of an incompressible 

viscous fluid past an oscillating vertical plate with Newtonian heating is studied. The 

free convection flow with either heat or heat and mass transfer with radiation effect 

is considered. The problem of magnetohydrodynamic free convection flow in a 

porous medium is also studied. Appropriate non-dimensional variables are used to 

reduce the dimensional governing equations along with imposed initial and boundary 

conditions into dimensionless forms. The exact solutions for velocity, temperature 

and concentration are obtained using the Laplace transform technique. The 

corresponding expressions for skin friction, Nusselt number and Sherwood number 

are also calculated. The graphical results are displayed to illustrate the influence of 

various embedded parameters such as Newtonian heating parameter, radiation 

parameter, Grashof number and phase angle. The results obtained show that the 

effect of Newtonian heating parameter increases the Nusselt number but reduces the 

skin friction. However, the Nusselt number is decreased when the radiation 

parameter is increased. Also, the skin friction is decreased when the radiation 

parameter, phase angle and Grashof number are increased. 
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ABSTRAK 

 

Gerakan bendalir likat yang disebabkan oleh plat menegak berayun penting 

dalam kebanyakan masalah kenaan contohnya penjurusan akustik yang mengelilingi 

jasad berayun dan lapisan sempadan tak mantap yang turun naik. Dalam lapisan 

sempadan,  aliran olakan bebas merupakan gerakan yang disebabkan oleh interaksi 

graviti dengan perbezaan ketumpatan di dalam bendalir. Perbezaan ini berlaku 

disebabkan oleh kecerunan suhu atau kepekatan atau komposisi kedua-duanya. 

Situasi di mana haba dipindahkan ke bendalir berolak melalui permukaan tertutup, 

yang mempunyai muatan haba terhingga dikenali sebagai pemanasan Newtonan 

(atau aliran berolak jodoh). Dalam aliran olakan, konfigurasi ini berlaku apabila 

permukaan tertutup menyerap haba melalui sinaran suria. Dalam tesis ini, aliran 

olakan bebas bagi bendalir likat tak boleh mampat merentasi plat menegak berayun 

beserta pemanasan Newtonan dikaji. Aliran olakan bebas tersebut sama ada dengan 

haba atau haba dan jisim dengan kesan sinaran dipertimbangkan. Masalah aliran 

olakan bebas hidrodinamik magnet di dalam bahantara berliang juga dikaji. 

Pembolehubah tak matra yang bersesuaian digunakan untuk menurunkan persamaan 

menakluk beserta syarat awal dan syarat sempadan bermatra ke bentuk tak bermatra. 

Penyelesaian tepat bagi halaju, suhu dan kepekatan diperoleh menggunakan teknik 

penjelmaan Laplace. Ungkapan yang sepadan untuk geseran kulit, nombor Nusselt 

dan nombor Sherwood juga dihitung. Keputusan grafik dipaparkan untuk 

menggambarkan pengaruh pelbagai parameter yang ditetapkan seperti parameter 

pemanasan Newtonan, parameter sinaran, nombor Grashof dan sudut fasa. 

Keputusan yang diperoleh  menunjukkan kesan parameter pemanasan Newtonan 

meningkatkan nombor Nusselt tetapi menurunkan geseran kulit. Namun, nombor 

Nusselt berkurang apabila parameter sinaran meningkat. Juga, geseran kulit 

berkurang apabila parameter sinaran, sudut fasa dan nombor Grashof meningkat. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction 

 

 

 This chapter will discuss about the research background, problem statement, 

objectives and scope of research, research methodology, significance of the study 

and finally thesis outlines. 

 

 

 

 

1.2  Research Background 

 

 

 A fluid is a substance that continuously deforms under an applied shear 

stress. Fluids which obey Newton’s law of viscosity and for which dynamic viscosity 

has a constant value are known as Newtonian fluids. 

 

 

 Mathematically, 

                                                                        
  

  
                                                                   

                                                          
  

  
                                                                 

 

 

 In above expression   is the shear stress exerted by the fluid,   is the dynamic 

viscosity of fluid and       is the shear strain or rate of deformation perpendicular 
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to the direction of shear. Equation (1.2) is known as Newton’s law of viscosity. 

Simply, this means that the fluid continues to flow regardless of the forces acting on 

it. For example, water is Newtonian, because it continues to exemplify fluid 

properties no matter how fast it is stirred or mixed. 

 

 

 Heat transfer (or heat) is thermal energy in transit due to a spatial temperature 

difference. Whenever there exists a temperature difference in a medium or between 

media, heat transfer must occur. Likewise if we have a multicomponent system with 

a concentration gradient, one constituent of the mixture gets transported from the 

region of higher concentration to the region of lower concentration till the 

concentration gradient reduces to zero. This phenomenon of the transport of mass as 

a result of concentration gradient is called mass transfer (Cengel et al. 1998 and 

Incropera et al. 2011). 

 

 

 There are three types of heat transfer: conduction, convection and radiation. 

Conduction is heat transfer by means of molecular agitation within a material 

without any motion of the material as a whole. Convection is the transfer of thermal 

energy from one place to another by the movement of fluids or gases. Whereas 

radiation is heat transfer by the emission of electromagnetic waves which carry 

energy away from the emitting object. Further in convection, if the fluid motion is 

induced by some external resources such as fluid machinery or vehicle motion, the 

process is generally called forced convection flow. While if the motion in the fluid is 

induced by body forces such as gravitational or centrifugal forces, this kind of flow is 

said to be free or natural convection. Mixed convection flow occurs when free 

(natural) and forced convection mechanisms simultaneously and significantly 

contribute to the heat transfer.  

 

 

 Free convection has its applications such as those found in heat transfer from 

a heater to air, heat transfer from nuclear fuel rods to the surrounding coolant, heat 

transfer from pipes, cooling of the electronic devises, the spreading of pollutants 

from smoke stacks and atmospheric and oceanic circulation as explained by 

Ghoshdastidar (2004). Free convection flows occur not only due to temperature 

difference, but also due to concentration difference or the combination of these two. 
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The study of free convection flow with heat and mass transfer plays an important 

role in the design of chemical processing equipment, formation and dispersion of 

fog, crop damage due to freezing, nuclear reactors and environmental pollution.  

 

 

 In the advancement of space technology and in processes involving high 

temperatures thermal radiation effects play an important role. Recent developments 

in missile reentry, rocket combustion chambers, hypersonic flights, power plants for 

inter planetary flight, gas cooled nuclear reactors and power plants for inter planetary 

flight, have focused attention on thermal radiation as a mode of energy transfer and 

emphasize the need for improved understanding of radiative transfer in these process. 

Heat transfer by thermal radiation is basically very important in many aspects of 

practical engineering applications. Some well known examples are the composite 

structures applied in industry, chemical engineering, solar radiation in buildings, 

foundry engineering and solidification processes. The radiative heat transfer 

problems are also important in industrial textiles, textiles designed for use under 

hermetic protective barrier, multilayer clothing materials and needle heating in heavy 

industrial sewing as explained by Korycki (2006).  

 

 

 On the other hand, the motion caused by oscillations of the plate is known as 

Stokes's second problem in the literature. Such a motion is not only possess a 

theoretical appeal but it also occurs in many applied problems such as acoustic 

streaming around an oscillating body and in the study of unsteady boundary layer 

with fluctuations (Tanner, 1962). The transient solution for the flow of a viscous 

fluid due to an oscillating plate have been studied by Penton (1968). Erdogan (2000) 

considered the unsteady flow of a viscous incompressible fluid due to an oscillations 

of plane wall and obtained the exact solutions by mean of the Laplace transform 

technique. Extensive research work has been published on the flow of a viscous fluid 

due to oscillations of the plate for different constitutive models (see for instance Das 

et al. (2008), Fetecau et al. (2009) and the references therein). However, the motion 

induced by oscillations of the plate in free convection flow are rarely studied in the 

literature. Such investigations are further narrowed down when the exact solutions of 

free convection flow are desired particularly by using the Laplace transform 
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technique. Perhaps, it is due to the difficulty in finding the inverse Laplace 

transforms.  

 

 

 In the mathematical modelling of convective boundary layer flow problems, 

the researchers usually use the boundary conditions of constant wall temperature or 

constant heat flux. However, in many practical situations where the heat transfer 

from the surface is taken to be proportional to the local surface temperature, the 

above assumptions fail to work. Such type of flows are termed as conjugate 

convective flows and the proportionally condition of the heat transfer to the local 

surface temperature is termed as Newtonian heating. This work was pioneered by 

Merkin (1994) for the free convection boundary layer flow over a vertical flat plate 

immersed in a viscous fluid. However, due to numerous practical applications in 

many important engineering devices, several other researchers are getting interested 

to consider the Newtonian heating condition in their problems. Few of these 

applications are found in heat exchanger, heat management in electrical appliances 

(such as computer power supplies or substation transformer) and engine cooling 

(such as thin fins in car radiator). Therefore, in view of such applications various 

authors have been used the Newtonian heating condition in their convective heat 

transfer problems and have obtained the solutions either numerically or in analytical 

forms. 

 

 

 Interestingly, so far no study has been reported in the literature to study the 

magnetohydrodynamics (MHD) free convection flow of viscous fluid over an 

oscillating plate with Newtonian heating. The MHD flow on the other hand has 

several applications in the field of agricultural engineering, geophysics and 

petroleum industries. Recently, considerable attention has been focused on 

applications of MHD and heat transfer such as metallurgical processing, MHD 

generators and geothermal energy extraction. Therefore, it is of great interest to study 

the effects of magnetic field and other participating parameters on the temperature 

distribution and heat transfer when the fluid is not only an electrically conducted but 

also when it is capable of absorbing-emitting radiation. 
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 Furthermore, the flow through porous media has received considerable 

attention in recent years because of its several important applications such as those 

involving heat removal from nuclear fuel debris, drug permeation through human 

skin, flow of oil through porous rock, filtration of solids from liquids, just to name a 

few. A porous medium is a material containing void spaces (pores), either connected 

or unconnected, dispersed within it in either a regular or random manner. These 

voids may contain a variety of fluids such as water, air and oil. If the voids represent 

a certain portion of the bulk volume, a complex network can be formed which is able 

to carry fluids. Porous media play an important role in applied science and 

engineering such as 

 

 

 Soil Science: The porous medium (soil) contains and transports water and 

nutrients to plants. 

 Hydrology: The porous medium is a water bearing and sealing layer. 

 Chemical Engineering: Porous medium is applied as filter or catalyst bed. 

 Petroleum Engineering: Porous medium (reservoir rock) stores, crude oil 

and natural gas. 

 

 

 In view of the above discussion and the immense need of the Newtonian 

heating in the free convection flow, the present study aims to investigate the free 

convection flow of an incompressible viscous fluid past an oscillating vertical plate 

with either heat or heat and mass transfer with Newtonian heating boundary 

condition. Moreover, the problem of MHD free convection flow in a porous medium 

is also studied. To the date, it is worth to mention that problem of MHD free 

convection flow in a porous medium with Newtonian heating is still not available in 

the literature. It is due to the complex nature of these problems and mostly the 

researchers could not obtain the exact solutions.  
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1.3  Problem Statement 

 

 

 The focus of this study is to analyze the effects of Newtonian heating and 

thermal radiation on the heat and mass transfer of an incompressible viscous fluid 

past an oscillating vertical plate. Heat transfer analysis is also considered in the 

presence of MHD and porosity effects. This study will explain the following 

questions. How does the Newtonian fluid model behave in the problem of unsteady 

free convection flow past an oscillating plate with Newtonian heating? How does the 

mathematical model behave in this problem involving heat and mass transfer? How 

does the presence of porosity, MHD and other fluid parameters affect the fluid 

motion? How the analytical solution for complicated free convection flow with 

Newtonian heating condition can be obtained? Specifically the problems investigated 

in this work are 

 

 

 Problem I. To find exact solution for free convection flow with heat transfer 

 past an oscillating plate. 

Problem II. To find exact solution for free convection flow with heat and 

mass transfer past an oscillating plate. 

Problem III. To find exact solution for MHD free convection flow with heat 

transfer past an oscillating plate in a porous medium. 

 

 

 

 

1.4  Research Objectives 

 

 

 Having obtained the solutions of each problem, the main interest of this study 

is to investigate the effect of  

 

 

i. The frequency of oscillating plate on velocity in free convection flow 

with heat transfer. 

ii. The frequency of oscillating plate on velocity in free convection flow 

with heat and mass transfer. 
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iii. The frequency of oscillating plate on velocity in MHD free convection 

flow through a porous medium with heat transfer. 

 

 

 

 

1.5  Scope of Research 

 

 

 This study will focus on the unsteady free convection flow of an 

incompressible viscous fluid with either heat or heat and mass transfer together. The 

radiation effect on the free convection flows past an oscillating vertical plate with 

Newtonian heating will be investigated. Moreover, the radiation effect on MHD free 

convection flow past an oscillating plate in a porous medium will also be 

investigated in this project. The solutions for velocity, temperature and concentration 

fields are presented in simple forms in terms of the exponential function and 

complementary error function. In all the proposed problems, the exact solutions have 

been obtained by a Laplace transform technique (see appendix A) and plotted 

graphically using either Mathematica-5.2 or Mathcad-15. 

 

 

 

 

1.6  Research Methodology 

 

 

 First of all, the physical problem in each case will be modeled in the form of 

coupled linear partial differential equations prescribed with a set of linear initial and 

boundary conditions. Then a set of non-dimensional variables will be introduced to 

transform the dimensional coupled partial differential equations into their 

dimensionless forms along with the imposed initial and boundary conditions. The 

non-dimensional partial differential equations along with imposed initial and 

boundary conditions are solved using a Laplace transform technique to get velocity, 

temperature and concentration fields. Moreover, the corresponding skin friction, 

Nusselt number and Sherwood number are also evaluated. 
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 In order to understand an insight of the problem, the exact solutions will be 

plotted. The softwares used for plotting are Mathematica-5.2 and Mathcad-15. The 

choice of selection of one of these softwares or both simultaneously, depends on the 

nature of the problem. Graphical results will enhance the understanding of the 

physical phenomenon of the problems. Furthermore, these results will be used to 

ensure the correctness of the solutions by satisfying all imposed initial and boundary 

conditions. The effects of the pertinent flow parameters will be noticed on the 

velocity, temperature, concentration, skin friction, Nusselt number and Sherwood 

number. The analytical results obtained through Laplace transform technique will be 

compared to the existing solutions available in the literature to verify the accuracy of 

the presented analysis.  

 

 

 

 

1.7  Significance of the Study 

 

 

 The results obtained from this project will be significant because of the 

following reasons: 

 

 

i. These results can be used as the basis for fluid flow problems frequently 

occur in engineering and applied sciences. 

ii. The obtained results will be helpful in checking the accuracy of the 

solutions obtained through numerical schemes. 

iii. The study of MHD free convection flow is important in view of its 

possible applications in astrophysics and geophysics. 

iv. Convection in porous media has important applications in geothermal 

energy storage and flow through filtering devices. 
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1.8  Thesis Outlines 

 

 

 This thesis consists of six chapters including this chapter. Chapter 1 discuss 

some basic terminologies of fluid mechanics, research background, problem 

statement, research objectives, scope of research, research methodology and 

significance of the present study. Chapter 2 provides the required literature regarding 

the problems outlined in the objectives. 

 

 

 Chapter 3 discusses the unsteady free convection flow of an incompressible 

viscous fluid past an oscillating vertical plate with Newtonian heating. The effects of 

thermal radiation are considered. It is assumed that the fluid is electrically conducted 

and absorbing-emitting radiation but a non-scattering medium. The motion in the 

fluid is induced due to buoyancy force and oscillations of the plate. The Boussinesq 

approximation for a Newtonian fluid is employed to model the governing problem. 

The Rosseland approximation is used to described the radiative heat flux in the 

energy equation. By using non-dimensional variables, the resulting governing 

equations along with initial and boundary conditions are written in dimensionless 

form. These equations are solved for the exact solutions using Laplace transform 

technique. The expressions for velocity and temperature are obtained. They satisfy 

all imposed initial and boundary conditions. As a special case, these solutions can be 

reduced to the existing solutions in the literature. The skin friction and Nusselt 

number are evaluated analytically as well as numerically and presented in tabular 

forms. Numerical results for velocity and temperature are shown graphically for 

various parameters of interest and the physics of the problem is well explored. 

 

 

 In Chapter 4, an extension of Chapter 3, we also consider the effects of mass 

transfer on the free convection flow of a viscous incompressible fluid past an 

oscillating vertical plate with Newtonian heating. As in the previous chapter, the 

equations of the problem are first formulated using the Boussinesq approximation 

and transformed into their dimensionless forms. Then Laplace transform method is 

used to find the exact solutions for velocity, temperature and concentration. These 

solutions satisfy all imposed initial and boundary conditions. Moreover, expression 

for skin friction, Nusselt number and Sherwood number are obtained. The obtained 
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numerical results for the pertinent flow parameters are plotted graphically and 

presented in tabular forms. The analytical results are compared to the existing 

solutions available in the literature to verify the accuracy of the presented analysis.  

 

 

 Chapter 5 is also an extension of Chapter 3. This chapter discusses the 

unsteady MHD flow of a viscous incompressible fluid passing through a porous 

medium with Newtonian heating. It is assumed that the fluid is electrically conducted 

and the magnetic field of uniform strength is applied perpendicular to the plate. The 

magnetic Reynolds number on the flow is considered to be small so that the induced 

magnetic field is negligible. The effect of viscous dissipation is also neglected in the 

energy equation. All the fluid properties are assumed to be constant except the 

influence of the density variation with temperature is considered only in the body 

force term. The motion in the fluid is induced due to buoyancy force and oscillations 

of the plate. The Boussinesq approximation is employed to model the governing flow 

problem and Laplace transform technique is used to obtain velocity and temperature 

fields. The corresponding skin friction and Nusselt number are also calculated. 

Numerical results for velocity are shown graphically for various parameters of 

interest. The solutions for hydrodynamic flow in a non porous medium are recovered 

from the presented analysis. 

 

 

 Finally, Chapter 6 presents the summary of this research and discuss several 

recommendations for future work. The references are given at the end of the thesis 

followed by some appendices. 
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