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ABSTRACT   

This paper presents computational study of blood flow in 

a stenotic artery using a suitable mathematical model. 

The artery was modeled as a rigid two-dimensional tube 

with three different levels of severity of the disease. In 

the mathematical model, the blood flow equations were 

governed by the stream function-vorticity equations. 

Then the cubic interpolation profile scheme with high 

order of accuracy was applied to discretise the advection 

term of the equation. Different cases were considered, 

where the Reynolds number of the blood flow were 

varied to predict pulsatile of blood flow. The present 

paper reports the analysis of flow separation area 

downstream the stenosed artery and the location and peak 

wall shear stress values. These findings may contribute 

for early detection and medical treatments to prevent 

further development of the disease and rupture of the 

artery. 

 

Keywords: Stenotic Artery, Cubic Interpolation Profile, 

Stream Function-Vorticity, Advection Equation, Wall 

Shear Stress. 

 

NOMENCLATURE  

u horizontal flow velocity 

v vertical flow velocity 

p Pressure 

D Diameter of blood capillary 

R0 Radius of blood capillary 

u∞ Inlet flow velocity 

 Vorticity 

 Stream function 

 Density of fluid 

 Viscosity of fluid 

 

1. INTRODUCTION 

Heart attack and stroke are the most important causes of 

death throughout the world. Many people die because of 

the blood stream constriction in different part of the 

blood circulation system. Theses constrictions are called 

atherosclerosis which is created in different parts of the 

blood circulation system (Ikbal et al., 2011). Because the 

blood flow behaviour is quite complicated in such 

regions, it is possible that the stenosis region (a region 

that blood vessel is occluded partially) would develop 

and cause more percentage of blood stream blockages. 

Therefore it is very important to be able to predict these 

regions before they become clinically dangerous.  

According to the experimental investigations on blood 

vessels, there are special regions that are the most 

probable for stenosis creation. These regions are blood 

vessels with bending and bifurcations (Tomaso et al., 

2011). In the region of stenosis, there is high wall shear 

stress which can cause the blood flow separation, 

recirculation or even turn the flow into turbulent 

(Ponalagusamy and Tamil, 2011). For example, high 

shear stress will cause the platelets to be activated and 

clot the blood flow. This condition is very probable in 

atherosclerosis disease and basically the main cause of 

heart attacks (Razavi et al., 2011). 

 

In the past years, many experimental researches have 

been conducted to investigate the blood flow through 

stenosis region. Young and Tsai (1973) experimentally 

studied the laminar steady flow through a rigid tube with 

56%, 75% and 89% axisymmetric constriction and 

concentrated on the pressure and the distribution of wall 

shear stress. Their works are then extended by Forrester 

(1970) who considered the effects of the flow separation 

in an artery with mild stenosis. 

 

Ahmed and Giddens (1983) studied both steady and 

pulsatile flow through 25%, 50% and 75% constriction of 

a rigid tube and Reynolds number ranges from 500 to 

2000 using laser Doppler anemometry (LDA).  Lieber 

and Giddens (1990) also investigated pulsatile flow 

through both 75% and 90% constricted rigid tubes. They 

concentrated their study on the centre line velocity and 

the wall shear stress distribution before and after the 

stenosis region. Recently, Shuib et al. (2011) studied the 

blood flow and the effect of the constriction on the tiny 

particles passing through different stenosis constriction 

using particle image velocimetry (PIV) to determine the 

velocity and the flow image for different constrictions. 

The experimental analysis of complex flows, particularly 

those that are pulsatile and transitional, is both labour-

intensive and expensive to perform with great accuracy. 

Nevertheless, such experimental data is critical for 

verifying the accuracy of emerging numerical studies of 

turbulent blood flow.  

 

One of the earliest numerical studies was conducted by 

Lee and Fung (1970) who simulated the flow through an 

axisymmetric stenosed rigid tube at low Reynolds 

numbers (0 < Re < 25). As the computers improved and 

became capable of dealing with more complicated 

geometries, more complicated models were solved; for 
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example, Wille (1980) and Rindt et al. (1987), who 

studied the flow through two-dimensional bifurcation 

models at wide range of Reynolds numbers. 

 

In order to analyze the structure of secondary flows for 

biomedical purposes, Perktold et al. (1991) performed 

three-dimensional simulations of pulsatile flow in carotid 

bifurcation artery. Perktold and Rappitsch (1995) then 

extended this work by considering distensible walls to 

resemble the blood capillary. They reported that in the 

distensible walls model, the wall shear stress decreases 

and the recirculation and separation regions are slightly 

reduced in size. However, the general behaviour of the 

flow is the same as the rigid wall model. 

 

In order to provide more accurate and realistic simulation 

of blood flow in arteries, Smith et al. (1996) provided an 

idealized physiologically relevant stenosed carotid 

bifurcation model. In their simulation, they tried to 

design a geometry which is adapted to the real shape of a 

stenosed artery in a bifurcation. These works were then 

extended by Steinman (2002), Steinman et al. (2000) and 

Gin et al. (2002). 

 

Recently many researchers are trying to add more 

sophisticated details to the blood stream simulation, like 

assuming the elasticity and pulsation behaviour of the 

blood vessels (Cho et al., 2011), or simulating flow as a 

non-Newtonian fluid (Prashanta, 2005 and Ikbal et al., 

2011).Since a stenotic artery may have different sizes 

and complex flow structure at the downstream region, an 

attempt is made develop a high accurate numerical model 

with low computational cost to explore the characteristic 

of Newtonian typed of blood flow through 

axisymmetrical straight diseased artery. Additionally, 

comparisons of different data mentioned above show a 

scatter result for the behavior of blood flow especially 

the dependence of reattachment length on Reynolds 

numbers and the magnitude and location of maximum 

shear stress on the stenotic body.  

 

Therefore, other than to improve our understanding on 

stenotic flow in axisymmetrical diseased artery with 

variant degrees of stenosis, more importantly, one of the 

objectives of the present investigation is to demonstrate 

an alternative finite different scheme that can be 

employed to predict the blood flow behavior at high 

accuracy and low computational time. 

 

2. PROBLEM FORMULATIONS 

In present study, the governing equation of two-

dimensional, incompressible and isothermal fluid flow is 

considered. Therefore, the governing continuity and x-

and y-momentum equations can be expressed as follow 

(Hasanuzzaman et al., 2007)  
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In this work, the pressure term in the Eqs. (2) and (3) are 

eliminated and rewrite in terms of vorticity function as 

follow (Azwadi and Idris, 2010) 
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In terms of stream function, the equation defining the 

vorticity becomes 
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Before considering any numerical solution to the above 

set of equations, it is convenient to rewrite the equations 

in terms of dimensionless variables. The following 

dimensionless variables will be used here 
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In terms of these variables, Eqs. (4) and (5) become 
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where the dimensionless parameter Reynolds number, Re 

is defined as 

 



DuRe                                                          (9) 

In the present study, we bring the so-called Cubic 

interpolated profile method (CIP) (Takewaki et al., 1985 

and Azwadi and Attarzadeh, 2011) to solve the 

hyperbolic type of the governing equations. The CIP is 

known as a numerical method for solving the advection 

term with low numerical diffusion.  This method 

constructs a solution inside the grid cell close enough to 

the real solution of the given equation (Nakamura and 

Yabe, 1999 and Azwadi and Rahman, 2009). 
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To see this, we begin by recalling Eq. (7) and its spatial 

derivatives, and split them into advection and 

nonadvection phases as follow 

Advection phase: 
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Nonadvection phase: 
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where 



x  x  and 



y  y . 

In the proposed method, the advection phase of the 

spatial quantities in the grid interval are approximated 

with constrained polynomial using the value the it’s 

spatial derivative at neighbouring grid points as follow 
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where jiXXX ,

~
  and 
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 ̃Y  Y Yi, j . The coefficients 

of  



a1 , 



a2 ,…



a7  are determined so that the interpolation 

function and its first derivatives are continuous at both 

ends. 

restriction, the numerical diffusion can be greatly 

reduced when the interpolated profile is constructed. The 

spatial derivatives are then calculated as 
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In two-dimensional case, the advected profile is 

approximated as follow 
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The newly calculated spatial quantities are then be used 

to solve non-advection phase of Eqns. (13) to (15) and 

vorticity formulation of Eq. (8). In present study, the 

explicit central finite different discretisation method is 

applied with second order accuracy in space. For 

example, the treatment for Eq. (8) is 
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3. PROBLEM PHYSICS 

A schematic of the stenosed artery with rigid walls 

considered in this research is shown in Figure1. as in 

Young and Tsai (1973). 

 

 
 

Figure 1 Geometry of the stenotic artery (Young and 

Tsai, 1973). 

 

The geometry is two-dimensional axisymmetric tube 

with rigid walls. The shape of the constricted region is 

important and it is specified like a cosine curve as follow 
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for 0ZzZ  . It is important to mention that there are 

many more geometrical shapes that are defined by 

different researchers. Some of them assume the 

constriction region as a parabolic equation but due most 

of the studies use the cosine curve, this shape was chosen 

as reference. The inlet and outlet flows are considered 

fully developed. Therefore an outlet length was set long 

enough to ensure that the outlet boundary conditions did 

not influence the flow in the vicinity of the stenosis. 

Basically there are two types of stenosis subjected to 

their 00 RZ ratio. The stenoses with 400 RZ is 

considered as mild stenosis while for 200 RZ is a 

severe stenosis. In the present research, the 

characteristics of blood flow through three types of 

severe stenosis at three different constriction percentages 

were investigated as in Table 1. 
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Table 1 Three types of severe stenosis at three different 

constriction percentages 

 

Model No R0 (cm) 



  Z0/R0 Percentage of 

Stenoses 

M-1 1 0.34 2 56% 

M-2 1 0.50 2 75% 

M-3 1 0.67 2 89% 

 

4. NUMERICAL RESULTS 

 

 
 

Figure 2(a) Streamlines contour at constriction of 56% 

and Re = 100 

 

 
 

Figure 2(b) Streamlines contour at constriction of 56% 

and Re = 200 

 

 
 

Figure 2(c) Streamlines contour at constriction of 56% 

and Re = 600 

 

 
 

Figure 3(b) Streamlines contour at contriction of 75% 

and Re = 200 

 

 
 

Figure 3(c) Streamlines contour at contriction of 75% 

and Re = 600 

 

 
 

Figure 4(a) Streamlines contour at contriction of 89% 

and Re = 100 

 

 
 

Figure 4(b) Streamlines contour at contriction of 89% 

and Re = 200 

 

Figures 2-4 show plots of streamline contours for 

respective conditions. These figures clearly exhibit the 

formation of recirculation region downstream of the 

stenotic artery for most of the cases. They can be seen 

that an artery with a more severe stenosis, the flow 

recirculation region was larger and its strength was also 

increase. However, no recirculation region was present 

for 56% percentage of stenosis and Reynolds number of 

100. Our simulated results also indicated that there is no 

steady solution for the most severe stenoses (89%) and 

Reynolds number 600. These findings agree well with 

the results obtained by Young and Tsai (1973). 

 

The separation point and recirculation length for the 

considered Reynolds number were then determined and 

tabulated in Table 2. The table clearly indicates the 

significant effect of the stenosis geometry and the 

Reynolds number on the size of recirculation region. 

 

Table 2 Separation point and reattachment length of flow 

through stenosed artery 

______________________________________________ 
% of Constriction       Re = 100          Re = 200           Re = 600 

                                    SP       RL        SP       RL       SP        RL 

           56%                  --        --         4.19      5.22     3.81     7.73 

           75%                 3.90    6.25     3.74      8.47     3.52   16.76 

           89%                 3.60  10.26     3.51    16.52        --          -- 

___________________________________________________ 

Note: SP (Separation point), RL (Reattachment length)                                           
  

The wall shear stress is one of the most important 

parameters in the initiation of atherosclerosis. In the 

present study, the wall shear stress has been computed by 

the following equation 

 

Y

U




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Figure 5 illustrates the shear stress variation along the 

solid surface at a respective constriction and different 

Reynolds number.  They can be seen that the magnitude 

of wall shear stress increase rapidly when the flow 



105 

 

approaches the neck of stenosis. It then decreases to the 

minimum point before it recovers gradually in the 

downstream of the stenosis. The location of zero shear 

stress indicates the separation and reattachment of the 

developed vortices. Therefore, negative values of shear 

stress demonstrate the presence of recirculation region of 

the blood flow. It is noted that for the case of 56% of 

constriction, no separation of flow occurs at Re = 100.  

 

 
Figure 5a Distribution of wall shear stress for 56% of 

constriction 

 

 
Figure 5b Distribution of wall shear stress for 75% of 

constriction 

 

 
Figure 5c Distribution of wall shear stress for 89% of 

constriction 

For higher values of Reynolds numbers, the region of 

negative value of wall shear stress getting longer and 

longer indicates bigger and bigger size of vortex 

downstream the stenosis. This may results in further 

development of atherosclerotic plaque and expansion of 

stenosis area. Similar patterns can be observed for two 

other levels of severities. They demonstrate that as the 

Reynolds number increase, the location of peak shear 

stress shift slightly downstream as shown in Table 3. 

 

Table 3 location and values of peak shear stress 

______________________________________________ 
     % of              Re = 100              Re = 200              Re = 600 

Constriction      LST      ST           LST      ST         LST        ST 

      56%            2.78    0.077         2.78    0.189       2.78     0.827 

      75%            2.82    0.177         2.82    0.4354     2.82     1.815 

      89%            2.84    0.324         2.84    0.821         --            -- 

___________________________________________________ 

Note: LST (Location of peak shear stress), ST (Value of peak 

shear stress)                                            
 

5. CONCLUSION 

Blood flow in a stenotic artery has been investigated 

numerically using the cubic interpolation profile method. 

The results of flow variables such as shear stress 

distribution and recirculation flow have been computed 

for different level of severity of the disease and wide 

range of Reynolds numbers. The development of 

negative wall shear stress downstream the stenosis is 

found to be the prime development of further 

atheroclerosis plaque and expansion of stenosis area. The 

results have demonstrated that they are quite encouraging 

and in good agreement with the previously published 

data. It is hoped that these findings could be used in for 

early detection and medical treatments to prevent further 

development of the disease and rupture of the artery. 
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