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Abstract 

 
This paper reviews the dielectric modeling techniques and features of various dielectric models. In fact, 

many of the dielectric models have a polynomial characteristic, thus polynomial fitting is proposed in 

order to estimate the parameters in the dielectric model based on measured data. The coefficients of the 
polynomial equation were optimized with the measured data using HP 85070 B dielectric probe. Finally, 

the parameters in the dielectric models can be easily determined, based on the estimated polynomial 

coefficients. The parameters of the dielectric model were successfully estimated and compared with 
parameter values in the literature. 
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1.0  INTRODUCTION 

 

Dielectric study is important for materials located in the electric 

field at microwave frequencies, since at microwave frequencies 

the polar molecules in some dielectric materials become excited. 

In the industry field, the study of dielectric properties of 

industrial materials is becoming increasingly critical. This is 

because the dielectric properties of materials has played an 

important role in the construction of high- frequency electronic 

components, the quality of printed circuit board (PCB) 

substrate, the efficiency of microwave absorption materials, and 

the performance of dielectric antenna design. 

  The interaction between dielectric materials with 

electromagnetic fields can be best described by complex 

dielectric permittivity, r r rj     . The real part, r   is 

the dielectric constant which is the parameter influencing the 

electric field distribution and the phase of waves traveling 

through the material. In contrast, the imaginary part, the so-

called loss factor, r   influences the energy absorption or 

attenuation of the material. Dielectric spectroscopy is a 

macroscopic study requiring theoretical formulations to 

represent and describe the dielectric mechanism inside the 

materials. 

  The first dielectric expression was derived by Debye [6] 

based on permanent dipole moments in dielectric materials. 

However, the polarization molecules in inhomogeneous 

insulator materials are complex due to many body interactions 

between binding molecules. Thus, a lot of the dielectric equation 

was modified from the ideal Debye theory, such as Cole-Cole 

(CC) [4], Davidson-Cole (DC) [5], and Havriliak-Negami (HN) 

[9], as well as Kohlrausch-Williams-Watts (KWW) distribution 

function, in order to represent the actual properties of the 

material. Those models are more suitable for lossy materials at 

microwave frequency range (molecules orientational 

polarization frequency). Normally, the ideal Debye’s model [6] 

involves a search for the three parameters ( s , and  ) as 

detailed in Section 2 and 3. In order to obtain a calculated value 

of permittivity closed to the measurement results, some 

empirical parameter were added to the model to establish a good 

fit with the measurement data, such as the modified Cole-Cole 

model [4]. In this study, the polynomial approaches are used to 

establish the parameters inside the dielectric models based on 

the measurement results. 

 

 

2.0  DIELECTRIC MODELS 

 

In general cases, after the dielectric material has been placed in 

a steady external field, its molecules tend to gravitate 

exponentially to an equilibrium state as given by [14]. 

 

   expf t t       (1) 
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The relaxation function,  tf  can be related to relative 

permittivity, r  material via Laplace transform as 
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  Thus, in the frequency domain, ideal relative permittivity 

can be expressed as equation (3) (in Table 1). However, various 

alternative expression were done to fit the practical permittivity 

data, such as the Cole-Cole model [4], the Davidson-Cole model 

[5], and the Havriliak-Negami model [9], as listed in Table 1.  

 
Table 1  Various frequency-domain dielectric models 
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where   and s are the optical permittivity and 

static permittivity, respectively. Symbol   and   

are the angular frequency and relaxation time. 
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where α is the empirical constant with 0 < α ≤ 1. 
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where β is the empirical constant with 0 < β ≤ 1. 
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where β and α are the empirical constant with 0 < β ≤ 1 

and 0 < α ≤ 1. 
 

 

 

In practice, in a large number of heterogeneous systems it is 

found that the polarization does not decay as equation (1), but it 

is a response as a stretched exponential function [1].  

 

   expf t t


      (7) 

 

The stretched exponential behavior is called Kohlrausch-

Williams-Watts (KWW). By using equation (7) as a decay 

function, equation (2) in the time-domain becomes 
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For (N+1) relaxation systems, the dielectric properties can be 
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3.0  DIELECTRIC MODELS IN POLYNOMIAL 

EXPRESSIONS 

 

The approximated series of the Debye model provides more 

degrees of freedom to specify the broadness of experimental 

relaxation peaks. The polynomial equations listed in Table 2 are 

used to determine the dielectric parameters s ,  ,
 and  . 

  As mentioned in Section 2, the relative complex 

permittivity, 
r  for materials with only a single relaxation 

frequency is best described by the Debye or Cole-Cole model. 

The three widely acceptable representations [4, 13] of the Debye 

and Cole-Cole model are: 
 

1) Cole-Cole plot, equation (12) or (13) 

2) r   versus - r   plot equation (10) and 

3) r   versus r   plot, equation (11) 

 

  Series expansion of Equation (3) is usually used for c 

polynomial fitting of experimental data from which  s  and 

  can be estimated easily, once the relaxation time,   is 

known. The series expansion is described in detail in the 

Appendix. The real part of (3) can be represented in terms of 

equation (15). Since heterogeneous mixtures or materials may 

provide various forms of dispersion, relaxation time, , can 

thus (3) be written in the form of equation (17). Similarly, the 

imaginary part of (3) can be represented in the form of equation 

(18). 

  The natural domain of the KWW relaxation function is 

time domain. In this study, the KWW relaxation function is 

transformed to frequency domain by expanding the function as a 

series expression given as equation (19) and (20). This series is 

only suitable when implemented at low frequencies, as well as 

short relaxation time,  . This is because the higher series terms 

in (19) and (20) are weak when the series values are greater than 

the calculation limit of the software.  

  The corresponding values of the empirical parameters 

between the Kohlrausch–Williams-Watts (KWW) function in 

time domain and the Havriliak-Negami (HN) functions in the 

frequency domain were found using numerical simulations by 

Alvarez et al. (1991). The corresponding value of those 

parameters, obtained from the literature [1] was plotted in 

Figure 1. In this work, the relationship between those 

parameters was re-expressed in polynomial form as tabulated in 

Table 3.  
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Figure 1  Values of the Havriliak-Negami (HN) fitting parameters as functions ofthe corresponding   values. The solid line is polynomial fitting and the 

equations are tabulated in Table 3 
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Table 2  Various of frequency-domain dielectric models 
 

Polynomial Expressions Dielectric Expressions 

Linear equation                 
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Debye characteristics 
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N-order polynomial equation 
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N-order polynomial equation 
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Kohlrausch-Williams-Watts (KWW) characteristics  (Single relaxation) 
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The  x  term in (19) is the Gamma function. 
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Table 3  The corresponding relationship between the Havriliak-Negami (HN)  parameters ( N , M , and HN ) and the stretched exponential (KWW) 

parameters (  and KWW ) 

 

 
The corresponding relationship between the parameters of KWW and HN models in polynomial forms 
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 
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0.10864371 0.76452528 0.0030149013 0.33962219 0.096463000M          

 

  It is easier to calculate the dielectric properties of materials 

using the KWW function, since the function has only one 

unknown parameter (  ) compared to the HN function ( M , 

N , and NH ). Moreover, the relaxation time, KWW , is the 

actual relaxation value of the materials whilst the values of 

NH  are normally adjusted to give the best fit for the 

experimental data. However, for simplicity, the dielectric 

properties of materials are usually calculated in the frequency 

domain.  

 

 

4.0  RESULTS AND ANALYSIS 

 

4.1  Estimation of Parameters s ,   and   Using Linear 

Equation 

 

The static permittivity, s , optical permittivity, , and 

relaxation time,  , can be predicted directly from equations 

(10) and (11) based on  equation (3). In equation (10), the 

gradient of the line of the  r  - r 
 
 plot is the relaxation time, 

 ,  whilst s  can be determined directly at  0r  . For 

equation (6.13b), the inverse relaxation time, 1  , can be 

calculated directly from the gradient of variation in r   with 

r   whilst the intersection between the line and r  -axis, 

when  0r   , gives the value of  .  

  By testing (10) and (11), the measured relaxation time,  

of bulk water at room temperature, T , was found as illustrated 

in Figure 2 (a), (b) and the result, which includes the estimated 

values of s and   were compared with the literature value as 

available in Table 4.  The results show that the r   versus r   

regression is more stable and reliable than the r   versus the 



57                                     K. Y. You et al. / Jurnal Teknologi (Sciences & Engineering) 58 (2012) Suppl 1, 51–65 

 

 

r   regression estimating the relaxation time,  , of the 

materials. Linear plots of r   versus r   for water revealed 

problems with data below 3 GHz, thus only data above 3 GHz 

were used in regression calculation. Meanwhile, the higher 

frequency measurement ( 20 GHz ) is required for the 

accurate value estimation of   for higher lossy materials (

12~10 
) by using the r   versus the r   plot.  

  The measured relaxation time of bulk water ranging from 

25 oC to 60 oC obtained from equation (10) is plotted as 

Arrhenius plots (see Figure 3). The linear relationships in Figure 

3 indicate that the temperature dependence of the relaxation 

time can be described by equation (21). 

 
 

 
1

ln ln
273

oQ
R T

 
 

    

                   (21) 

 

  Where R is the gas constant  8.3143 J/mol KR    

and o  is a proportionality factor. The slope in Figure 3 

represents the mean activation energy, Q, of bulk water and give 

18.8913 kJ/mol compared with the literature value of 18.8 

kJ/mol [17]. The estimated value of  ln o  is -33.1045 or 

154.1966 10 so
  . Obviously, equations (10) and (21) 

are quite effective to estimate some microwave parameters, 

particularly for pure Debye relaxation materials. 

 

 

Table 4  The estimated values of relaxation time, , static permittivity, s  and optical permittivity,  , of bulk water at various temperatures, T 

 

 

Temperature    ( T 
± 1 )oC 

 

Debye model for water 

 

This work 

 

Thrane, 1976                 Kaatze et al., 1989 

 

   Eq (10)                 Eq (11) 

 
 

25 

 
 

 

 

     8.3766 ps                      8.28 0.02 ps    

     78.5198
s
                         78.36 0.05

s
    

     4.9

                                 5.4 0.2


   

 

8.3651 ps          8.6841 ps   

78.2684
s
             6.9363


  

 

 

 
 

30 

 
 

 

 

     7.6118 ps                       7.31 0.05 ps    

      76.6836
s
                         76.56 0.2

s
    

      4.9

                                 5.2 0.3


   

 

7.6007 ps        8.0579 ps   

76.8199
s
           7.7771


  

 
 

 
 

40 

 
 

 

 

              -                                       5.82 0.1 ps    

                                                       73.18 0.2
s
    

                                                       4.6 0.7

   

 

6.2485 ps        6.7760 ps   

74.0768
s
           7.0199


  

 

 

 
 

50 

 
 

 

 

              -                                       4.75 0.1 ps    

                                                       69.89 0.2
s
    

                                                       4.0 0.5

   

 

4.7514 ps         5.7936 ps   

70.8523
s
            7.9968


  

 

 

 
 

60 

 

              -                                       4.01 0.1 ps                 

                                                       66.70 0.2
s
    

                                                       4.2 0.5

   

 

 

3.7810 ps         5.6117 ps   

68.1510
s
           12.691


  
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(a) 

 

 
(b) 

 

Figure 2 (a) (b)  Variation in r   with r  , which plotting slope represents the relaxation time, ,of  water at  25
o

C, 30
o

C, 40
o

C, 50 
o

C and 60 
o

C 
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Figure 3  Arrhenius plots for bulk water 

 

 

4.2  Estimation of Parameter s  Using Higher Order 

Polynomial Equation  

 

The higher-order polynomial fitting of Debye models (15) and 

(16) was applied on pure water. There are 4, 5, and 6 order 

polynomial fitting that were tested and those polynomial 

coefficients are compared with the original Debye model [22] at 

( 25 ± 1 )oC as tabulated in Table 5 and plotted in Figure 4. 

There are no typical rules to determine the order of polynomial 

to give the best fit with the experimental data. As long as the 

fitting line is matched with the experimental data, the order of 

polynomial is considered an appropriate choice. In our 

experience, the first few terms of coefficients are usually 

attributed to curve scope at low frequencies, and provide 

accurate values with mathematical calculation and conversely as 

shown in Table 5. 

  In this work, the dielectric constant, r   of water as a 

function of frequency, f and temperature, T , was formulated as 

equation (22) with the aid of equation (15): 
 

 

 25 3 24 2 21 19 2

45 3 43 2 41

0.291531740265 85.6619558508

5.587521507307 10 4.234240810053 10 7.041326579374 10 3.67162865847 10

2.348175849507 10 5.437541347645 10 4.191922013075 10 1.160

r T

T T T f

T T T



   

  

   

       

       



 

 

39 4

66 3 63 2 62 60 6

604385157 10

6.503772847655 10 1.089718588133 10 6.179833452506 10 1.372700865828 10

f

T T T f



   



        

      (22) 

 

 

By substituting equations (21) and (22) into (10), yields  
 

 

  

(22) 0.291531740265 85.6619558508

2 exp 273
r

o

Eq T

f Q R T


 

   
 



 
 

    
       (23) 

 

  where T is the temperature (in 
oC ) and 

 0.291531740265 85.6619558508
s

T     . 

Nevertheless, equations (22) and (23) are only valid for 
o o25 C 60 CT   and 0.13 GHz 20 GHzf  .  

The comparison between equations (22) and (23) with measured 

data is illustrated in Figure 5.   
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Figure 5  Variation in r   and r with frequency for water at  25

o

C, 30
o

C, 40
o

C, 50
o

C and 60 
o

C 
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Table 5 Comparison between the polynomial fitting approach and the Debye model for water at ( 25 ± 1 ) 
oC 

 

Debye model for water at ( 25 ± 1 )oC 

Literature (Thrane, 1976) 

4.9   ; 0   

12
8.3766 10


  ; 

 s     

This work 

 

Coefficients of  4 order polynomial  
fitting 

 

Coefficients of  5  order polynomial   
fitting 

 

Coefficients of  6  order polynomial   
fitting 

 

   

78.5198s   

   
2 2 19

2 2.0393 10 


    

   
4 4 40

2 5.6492 10 


    

   
6 6 60

2 1.5649 10 


    

   
8 8 81

2 4.3349 10 


    

   
10 10 101

2 1.2008 10 


  

   
12 12 122

2 3.3263 10 


    

 

78.4222
s

   

19

1
2.09533 10A


   

40

2
5.81889 10A


   

60

3
1.13358 10A


   

82

4
9.78302 10A


   

 
 

 

 

78.4714
s

   

19

1
2.16143 10A


   

40

2
7.23914 10A


   

60

3
2.19206 10A


   

81

4
4.17349 10A


   

102

5
3.35478 10A


   

 

 

 

78.4756
s

   

19

1
2.18826 10A


   

40

2
8.25943 10A


   

60

3
3.39696 10A


   

80

4
1.04033 10A


   

101

5
1.79994 10A


   

122

6
1.28057 10A


   

 

    9
2 3.8747 10 


  

   
3 3 29

2 1.0733 10 


    

   
5 5 50

2 2.9733 10 


    

   
7 7 71

2 8.2362 10 


    

   
9 9 91

2 2.2815 10 


    

   
11 11 112

2 6.3200 10 


  

   
13 13 132

2 1.7507 10 


    

 

9

1
3.92047 10B


   

29

2
1.20988 10B


   

50

3
3.62133 10B


   

71

4
7.25554 10B


   

92

5
6.25084 10B


   

 

 

 

9

1
3.92160 10B


   

29

2
1.22504 10B


   

50

3
3.94714 10B


   

71

4
9.68369 10B


   

91

5
1.35806 10B


   

113

6
7.69585 10B


   

 

 

9

1
4.05296 10B


   

29

2
2.22363 10B


   

49

3
2.47755 10B


   

69

4
1.94559 10B


   

90

5
8.07950 10B


   

110

6
1.64109 10B


   

131

7
1.28868 10B


   

 

 

4.3  Estimation of Parameters s ,  , and α Using Second 

Order Polynomial Equation  

 

It is hard to determine the value of parameter,  , especially 

for lower and multiple relaxation time materials. For lower 

single relaxation time materials, like water, this problem can be 

solved by using a greater measured data range or measuring the 

material at a sufficiently higher frequency. The size of the data 

range can be considered based on the uniformity distribution of 

measured data and parabola shape in the Cole-Cole plots ( r   

versus r   ) as shown in Figure 6.  

  Equation (12) is an ideal concept, but in actual 

experiments, some molecules have much broader dispersion 

lines and their absorption maxima are distinctly below the ideal 

concept.  In this case, the Cole-Cole characteristics [Equation 

(13)] are suggested. Obviously, the measured data of r   as a 

function of r   can be easily expressed by the second order of 

polynomial equation. This approach was applied on four 

standards of lossy liquids, propan-1-ol, ethanol, methanol and 

water. The quadratic fitting expression, based on measured data 

for each liquid is tabulated in Table 6. 

Besides that, the Debye parameters can be found from the root 

values of equations (12) or (13). The maximum root value of 

equations (12) or (13) is represented as s , while the minimum 

value is assumed as  . The empirical constant, α of the Cole-

Cole model can also be estimated using (13) by comparing the 

calculated coefficient ( 1P , 2P  and 3P ) with corresponding 

fitting coefficient ( 1a , 2a  and 3a ) as shown in Table 8. The 

fitting coefficients values ( 1a , 2a  and 3a ) in Tables 6 and 7 

were compared with the calculated values using (14a), (14b), 

and (14c), where the constant parameters ( s and ) in those 

equations were obtained from the literature as listed in Table 7. 

The more complete the parabola shape in the Cole-Cole plots, 

the more accuracy there will be in the predicted parameters. The 

overall comparison results of the Debye’s parameters predicted 

for the four liquids are available in Table 7.  

  Another important factor in modeling is the uniformity or 

weight distribution of measured data. From Figure 6, it is 

evident that a higher weight of data occurs at higher frequency 

for propan-1-ol and ethanol as well as methanol. For propan-1-

ol liquid, the measured data of r   has a higher density of value 

between ~ 4 to ~ 5 for the frequency range 0.13 GHz to 20 GHz. 



62                                     K. Y. You et al. / Jurnal Teknologi (Sciences & Engineering) 58 (2012) Suppl 1, 51–65 

 

 

This condition may influence the tendency of polynomial fitting. 

In addition, the small variation in r   with the greatest 

frequency range will give a lower sensitivity. The phenomena 

may provide a large number of relative errors in modeling. 

Therefore, in this work, the fitting measured data acquired by 

using formulas (15) and (11) for propan-1-ol and ethanol are 

0.13 GHz - 1.5 GHz and 0.13 GHz - 3 GHz, respectively. For 

methanol, the data range 0.13 GHz – 8 GHz was utilized and the 

results are shown in Table 7.  
 

 

Table 6  The fitting expressions of  
2

r   as a function of r   for four standard lossy liquids at (25 ± 1) 
o

C 

 

 

Samples 
Quadratic fitting between     and    

   
2

2

1 2 3r r ra a a         

 

Propan-1-ol 
 

 

Ethanol 
 

 

Methanol 
 

 

Water 
 

 

     
2 2

0.78294794403552 19.752800611883 60.50581728768r r r         

 

     
2 2

0.91140405224695 26.637788111836 97.000514651388r r r       

 

     
2 2

1.0661317094666 42.092128800077 202.66792634657r r r       

 

     
2 2

0.95057011678464 77.938401661636 262.09787960974r r r       

 

 

 

 

Figure 6 Cole-Cole plots for four standard lossy liquids for a frequency range of 0.13– 20 GHz at room temperature ( 25 ± 1 )
o

C 
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Table 7  The comparison results of predicted Debye’s parameters for the four liquids by using various techniques and models 

 

 

Materials 

 

 

 Roots of  2
nd

 order Eq (13)                 Fitting                                 Fitting 

 [ using Table 6]                           [ using Eq (15) ]                    [ using Eq (11) ] 

 
Debye model 

 

 

Fitting coefficient 

[ using Table 6 ] 

                  

 

Propan-1-ol 

 
 

 

 

 
21.66109s                              20.141s                             20.142s   

3.567664                                                                           268.93 ps   

 

 

 
20.44s   

3.8   

320.685 ps   

(Grant et al., 1989) 

 

 
77.67s    

  24.24s    

 

 

 

3 1 77.28a a   

2 1 25.23a a   

 

 

 

 

Ethanol 

 
 

 

 

 
24.96384s                             24.052s                              24.336s   

4.263356                                                                           141.54 ps   

 

 

 
24.5s   

4.52   

165.442 ps   

(Grant et al., 1989) 

 
110.7s    

  29.02s    

 

 

3 1 106.4a a   

2 1 29.23a a   

 

 

 

 

Methanol 

 
 

 

 
33.86837s                            33.593s                               33.859s   

5.612804                                                                                 49.091 ps   

 

 

 

32.616s  ;

5.5849   

47.4451 ps   

(Using NBS data) 

 
182.2s    

  38.2s    

 

 

 

3 1 191.0a a   

2 1 39.67a a   

 

 

 

Water 

 
 

 

 

 
78.47778s                              78.476s                               78.276s   

3.513441                                                                                   

8.3651 ps   

 

 

 

 

78.5198s   ; 

4.9   

8.3766 ps   

(Thrane, 1976) 

 

 
384.7s    

  83.42s    

 

3 1 275.7a a   

2 1 81.99a a   
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Table 8  The estimated empirical constant, α of the Cole-Cole model using (13) by    comparing the calculated coefficient ( 1P , 2P  and 3P ) with the 

corresponding fitting coefficient ( 1a , 2a  and 3a ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.0  CONCLUSION  

 

The approximated series of the dielectric model provides more 

degrees of freedom to specify the broadness of experimental 

relaxation peaks. The polynomial approach is implemented to 

reduce the difficulty of finding out the dielectric’s parameters. 

In this paper, a polynomial fitting was used to estimate the 

Debye or Cole-Cole parameters. In this work, four types of 

methods were suggested: 

 

a) Using an N-order polynomial fitting, equation (15) was use 

to estimate the value of s . This procedure is applied 

particularly on the multiple dispersion lossy materials. 

 

b) Applying the linear polynomial fitting of equation (10) to 

estimate the values of s  and  . This method can be used 

for both single and multiple dispersion lossy materials. 

 

c) Rooting the second order polynomial fitting of equations 

(12) and (13) to estimate values of s  and ε , as well as 

determine the empirical constant, N from the coefficients of 

(13). The techniques are quite accurate for single 

dispersion lossy materials with non-Debye 

characterization. 

 

d) Determining the values of s  and ε  from the 

coefficients of second order polynomial equation (13). This 

rule is only effective for single dispersion lossy materials 

with pure or approximated pure Debye characterization. 

 

e) The corresponding values of empirical parameters between 

the Kohlrausch–Williams-Watts (KWW) and Havriliak-

Negami (HN) functions were re-expressed in polynomial 

form.  
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