
================fjmrq^qflk=lc=jfppfkd=a^q^=tfqe=afccbobkq=jfppfkdkbpp============RT=

gìêå~ä=qÉâåçäçÖá, 57 (Sciences & Engineering) Suppl 1, March 2012: 57–67 
© Penerbit UTM Press, Universiti Teknologi Malaysia 

 

fjmrq^qflk=lc=jfppfkd=a^q^=tfqe=afccbobkq=
jfppfkdkbpp=jb`e^kfpj=

=

el=jfkd=h^kdNI=c^aefi^e=vrplcOG=C=fpj^fi=jle^j^aP=

 

^Äëíê~Åí. This paper presents a study on the estimation of missing data.  Data samples with 
different missingness mechanism namely Missing Completely At Random (MCAR), Missing At 
Random (MAR) and Missing Not At Random (MNAR) are simulated accordingly. Expectation 
maximization (EM) algorithm and mean imputation (MI) are applied to these data sets and 
compared and the performances are evaluated by the mean absolute error (MAE) and root mean 
square error (RMSE). The results showed that EM is able to estimate the missing data with 
minimum errors compared to mean imputation (MI) for the three missingness mechanisms. 
However the graphical results showed that EM failed to estimate the missing values in the missing 
quadrants when the situation is MNAR.  
 

hÉóïçêÇëW Missing data; expectation maximization; mean imputation 
 

^Äëíê~â. Kertas kerja ini mempersembahkan kaedah menganggar data ketakdapatan. Data 
ketakdapatan yang bermekanisma Ketakdapatan Secara Rawak Sepenuhnya (MCAR), 
Ketakdapatan Secara Rawak (MAR) dan Ketakdapatan Secara Tak Rawak (MNAR) 
disimulasikan. Algoritma Expectation Maximization (EM) dan gentian min (MI) telah digunakan 
dalam set data ini dan dibanding dengan menggunakkan min ralat absolut (MAE) dan punca min 
kuasa dua ralat (RMSE). Hasil daripada kajian menunjukkan EM dapat menganggar data 
ketakdapatan dengan menghasilkan ralat yang rendah berbanding dengan MI bagi ketiga-tiga 
mekanisme. Walau bagaimanapun, keputusan dalam graf telah menunjukkan EM gagal 
menganggar data ketakdapatan kuadran yang tinggi dan apabila mekanisme itu ialah MNAR.  
 

h~í~=âìåÅáW Data ketakdapatan; expectation maximization; gantian min  
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Missing data is a problem that always exists in the studies of hydrology and social 
science. The existences of missing data are normally caused by the technical errors  
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that normally happened in measurement and recording, and also because of 
insufficient samples used. In general, traditional methods such as listwise deletion 
and pairwise deletion are used before the data is analyzed. However these 
methods may affect the reliability of the model as the analysis will become biased 
and loss of precision since the missing data may relate to the observed data and 
the deletion of missing data will cause the sample size to become smaller and thus 
increase the variance of the data. 
  Many imputation methods have been used to deal with missing data. Acuna 
and Rodriguez [1] evaluated four methods of imputation: case deletion, mean 
imputation, median imputation and k-nearest neighbor (KNN) imputation in 
twelve datasets from Machine Learning Database Repository. Meanwhile in [2], 
they compared complete case analysis with multiple imputation in dealing with 
missing covariate data in medical research and showed that complete case analysis 
can lead to biased results as compared to multiple imputation. Study in [3] has 
used four different aggressive methods (simple substitution, parametric and ranked 
regression, and Theil method) to treat the missing rainfall data in Candelaro River 
Basin, Italy. Besides, the application of expectation maximization (EM) to the 
missing precipitation series in Turkey is presented in [4] before the homogeneity 
tests are used. The EM was also used in [5] and compared with the combination 
of auto-associative neural network and genetic algorithm. The results indicated that 
EM performed better when there is little dependency among the variables.  
  In this study, EM algorithm is used in the estimation of missing data. Three 
missingness mechanisms are applied in this study, namely missing completely at 
random (MCAR), missing at random (MAR) and missing not at random (MNAR).  
Simulation data with MCAR, MAR and MNAR situations are used and their 
performances are compared with mean imputation (MI) method. Mean 
imputation (MI) is used because it is the simplest approach that can preserve the 
mean of the data and produce smaller standard error as compared to other 
traditional methods [6]. 
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Data of difference missingness mechanisms are simulated. In definition, the data is 
missing completely at random (MCAR) if the probability of data missing is 
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unrelated to the data itself and other variables meanwhile missing at random 
(MAR) is referred to the probability of missing data that is dependent on some 
other variables but not on the missing data itself. Lastly, the missing not at random 
(MNAR) is a mechanism where the probability of the data missing is dependent 
upon the missing data itself [7]. Therefore, a dataset with MCAR, MAR and 
MNAR situations is generated respectively, based on the algorithm from [8] and 
[9], to evaluate the performance of the imputation methods used.  
  A complete data of X, Y and Z is simulated based on the concept of linear 
regression (Eq. 1 and 2). In this case, X is a random variable that has correlation 
with variable Y and variable Z, meanwhile Y and Z are independent to each other.  

Yiiii XY εγγ ++= 0             (1) 

Ziii XZ ελλ ++= 10              (2) 
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between X and Y is set to be higher (0.8) because the MAR mechanism is 
assumed to be dependent on  variable Y. Hence, the correlation between X and Z 
is set at a moderate value (0.5) due to this assumption. All the parameters are 
obtained by using least square method,  

x

y
xy σ
σ

ργ =1               (3) 

x

z
xz σ
σ

ρλ =1               (4)  

where xyρ  and xzρ  are the correlation between X and Y, and correlation between 

X and Z  respectively, xσ , yσ and zσ  are the standard deviation of X, Y and Z 

respectively.  Since the errors of Eqn. (1) and (2) have a constant variance, 
therefore the variances are estimated as 
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  Using the information above, sample size of 100 for data X, Y and Z are 
generated based on the linear regression of Eqn. (1) and (2). Next, different 
missingness mechanism (MCAR, MAR or MNAR) is then imposed to the 
simulated complete data by using Eq. (7) – Eq. (10). In this study, X is assumed to 
have missing values, meanwhile Y and Z are fully observed. Hence the probability 
of X to be missing can be written in a logistic regression,  
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where a2, a3 and a4 are used to control the desired missingness mechanism, 
meanwhile a1 is the intercept of the points and can be evaluated as a control of the 
proportion, p of X to be missing. The regression line is needed to shift to the left 
or right in order to get the desired proportion of missing data, and it is done by 
further generating an uniform random number, u and obtained the difference D,  
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  The values from Eq. (10) and u are sorted.  The highest probability is actually 
the desired proportion of X to be missing. Therefore the corresponding X are 
then made to be artificially missing to get the desired missingness mechanism. 
Table 1 shows the different values of a2, a3 and a4 that represents the types of 
missingness mechanism.  
 

q~ÄäÉ=N Types of missingness mechanism 
 

jáëëáåÖåÉëë=jÉÅÜ~åáëã ~O ~P ~Q=
MCAR 0 0 0 

MAR on Y 0.2 0 0 
Strong MAR on Y 2 0 0 

MNAR on X 0 0 0.2 
Strong MNAR on X 0 0 2 

 
 
PKM jbqelap=
 
In this study, expectation maximization (EM) algorithm is used to compare with 
the mean imputation (MI) in dealing with the missing values in X. The 
performances of the methods are evaluated by computing the mean absolute error 
(MAE) and root mean square error (RMSE).  
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The EM algorithm is a general method used to find model parameters for 
incomplete data. The algorithm starts with the E-step that concentrates on finding 
the expectation of the log-likelihood function that is conditional on the observed 
data and the model parameters. It is followed by the M-step where the log-
likelihood function is then maximized to find the new model parameters. The 
algorithm will iterate until the estimated parameters converge. The likelihood of 
the multivariate normal (X, Y, Z) is given as,  
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The log-likelihood is then become, 
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and it is also proven that this belongs to the exponential family. In this model, E-
step of EM is calculated by Eq. (11) – (14), 
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In the M-step, the parameters of the model are then estimated   
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where ∑Y and ∑Z are fully obtained from data, X Y and Z are the mean of X, Y 
and Z respectively. Finally the estimated of X is obtained as Eq. (22),  

ZYX 210
ˆˆˆˆ βββ ++=            (22) 
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The MI is a traditional method and the simplest method that used by hydrologists 
in dealing with missing data [10]. In this study, all the missing values of X will be 

replaced by taking the mean of the observed data, X .  
 
 
QKM obpriqp=^ka=afp`rppflk=
 
Table 2 shows the results of mean absolute error (MAE) and root mean square 
error (RMSE) of 20% and 80% of missing data with MCAR, MAR and MNAR 
missingness. It shows that EM performs excellently as compared to mean 
imputation (MI) by comparing the results of MAE and RMSE. When the data is 
MCAR or MNAR, the errors produced by EM are comparatively higher than 
MAR. Therefore, EM is considered a good and excellent tool when the 
missingness is MAR. 
  Figure 1 and 2 shows the results of EM when applied to the data with strong 
MNAR situation.  Missing data with 20% and 80% are compared. Both figures 
exhibit that although EM is able to estimate the missing values, the predicted 
values are actually underestimating the missing quadrants when compared to the 
complete data of X. All the highest values in missing X failed to be predicted by 
EM. This is also explains why the MAE and RMSE are high when MNAR is 
applied.  
  Figure 3 and 4 shows the results of EM when applied to the data with strong 
MAR on Y. Although the missing percentage is higher (up to 80% of missing on 
X), the EM is still able to predict the missing quadrants accurately. In other words, 
all the highest missing values is able to be estimated by EM with minimum errors. 
This justifies further the strength of EM in estimating the missing data when the 
missingness is MAR. 
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q~ÄäÉ= O Results of MAE and RMSE with different missingness mechanism on the data with 20% 
and 80% missing 

 
 OMB=jáëëáåÖ= UMB=jáëëáåÖ=
 bj= jf bj jf=
 MAE RMSE MAE RMSE MAE RMSE MAE RMSE 

MCAR 2.0983 2.9378 3.5242 4.2354 1.9791 2.5217 3.2129 3.9904 
MAR on Y 2.0564 2.8717 3.6776 4.4586 2.0599 2.5754 3.1664 3.8632 

Strong 
MAR on Y 

1.7234 2.1269 3.9978 4.7217 1.8944 2.3807 5.3477 6.0705 

MNAR on 
X 

1.9234 2.8052 3.8706 4.6528 2.0424 2.5336 3.2548 3.9455 

Strong 
MNAR on 

X 

2.2997 2.9178 5.9037 6.0817 2.6761 3.2172 6.8816 7.3848 

 
 

 

=
cáÖìêÉ= N Comparative graph of complete and predicted missing values by EM when the data is 

strong MNAR with 20% missing (o is observed of X, + is predicted of X) 
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cáÖìêÉ= O Comparative graph of complete and predicted missing values by EM when the data is 

strong MNAR with 80% missing (o is observed of X, + is predicted of X) 
 
 

 

 

 
cáÖìêÉ= P Comparative graph of complete and predicted missing values by EM when the data is 

strong MAR with 20% missing (o is observed of X, + is predicted of X) 
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cáÖìêÉ= Q Comparative graph of complete and predicted missing values by EM when the data is 

strong MAR with 80% missing (o is observed of X, + is predicted of X) 
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This study is concerned on the comparison between EM algorithm and mean 
imputation (MI) on estimating missing data using simulated data with 20% and 
80% of missing data. Three different missingness mechanisms namely MCAR, 
MAR and MNAR are artificially applied on the simulated data.  
  All the results indicated that EM algorithm is a powerful tool in estimating the 
missing values as compared to MI method. This is because the replacement of 
missing data by mean of observed sample will shift some high values to the middle 
of the distribution and thus can reduce the variance of the data. Therefore either 
in MCAR, MAR or MNAR, it is not encouraged to use MI since the errors 
produced are comparatively large.    
  The EM shows numerically by comparing the values of RMSE and MAE to be 
a good tool in predicting missing values. However the graphical results shows that 
EM actually failed to estimate the missing quadrants, especially when the data is 
having strong MNAR missingness mechanism.   
  As a conclusion, EM algorithm is an excellent tool when the data is missing at 
MCAR and MAR situation. If the data is missing at MNAR situation, EM 
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algorithm alone is not enough and further research is to be done to improve the 
estimation.    
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