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ABSTRACT 
Finite Element (FE) analyses are used world widely in geotechnical engineering to 
obtain the soil displacement caused by tunnelling. The surface settlement induced by 
tunnelling predicted by FE is known to be wider and shallower than the field 
measurements particularly for stiff clays with high coefficient of earth pressure at rest, 
K0. It has been recognized that neglecting the non-linearity, anisotropy and three-
dimensional effects of the soil model as well as K0 condition can be the reasons of this 
discrepancy. Unfortunately, such numerical studies were only limited to the problem in 
the plane strain condition whereas tunnelling is obviously a three dimensional (3D) 
problem. This paper compares 3D FE modelling of tunnel constructions in stiff soil of 
London Clay using non-linear soil model with low and high K0 regimes. It was found 
that modelling using isotropic non-linear soil with low value of K0 gave the best 
matched-fit data on the observed greenfield surface settlement as opposed to the other 
soil models. In addition, the model is able to replicate the steady-state condition of 
ground movement after the completion of tunnel construction that is when the tunnel 
face has passed seven times of the tunnel diameter beyond the boundary point. This 
steady-state condition is not possible to simulate using other soil models. 
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INTRODUCTION 
Accurate prediction of surface settlement induced by tunnelling in the urban area is an 

important duty for tunnel engineers to ensure that the adjacent buildings are adequately safe. 
Numerical analyses have been widely used for prediction of ground settlement. However, it is 
revealed that the surface settlement trough estimated using Finite Element (FE) method 
particularly in the stiff clays with high value of coefficient of lateral earth pressure at rest, K0, 
(e.g., London's clay) is much wider and shallower than the field data. Reasons for the discrepancy 
include the use of pre-failure soil model, K0 conditions and simulation of three-dimensional 
effects of tunnel excavation (eg. Masin, 2009). 
   

It was accepted by previous researchers (e.g., Gunn, 1993; Addenbrooke et al., 1997; 
Franzius et al., 2005) that numerical analyses incorporating the non-linear soil model with low-K0 
regime gives better surface settlement trough than the linear with high-K0 regime. Only few 
studies directly compare the results of both models in 3D analyses. Addenbrooke et al. (1997) for 
instance presented a series of plane strain analysis, including linear elastic and non-linear elastic 
pre-yield models. They concluded that the non-linear model considerably gives the deeper and 
narrower surface settlement than linear model although their result was still shallower and wider 
than the measured data. Studies on the use of 3D numerical modelling include Masin (2009), 
Yazdchi et al. (2006), Dasari et al. (1996) and Franzius et al. (2005). Franzius et al. (2005) for 
example showed adopting soil anisotropy parameters  derived from laborious experiments does 
not significantly improve the settlement profile in 3D FE modelling (Appendix A explains 
anisotropic soil model and its parameters). To improve the settlement trough, they adjusted 
fictitious soil anisotropy parameters for London Clay. Wongsaroj (2005) suggested a complex 
soil model considering non-linearity and anisotropy behaviour of the soil on the prediction 
regarding tunnel lining performance, generation of excess pore pressure and surface ground 
displacement. His soil model showed the narrowest surface settlement when compared with 
simple linear-elastic model. However the author’s result was still wider than the Gaussian curve 
with K0=0.5.  

 
The aim of this study is to improve the surface settlement prediction by means of 3D 

numerical simulation using fairly simple nonlinear elastic-perfectly plastic soil model with 
stiffness K0=0.5. The computed greenfield ground settlements are compared to the reported field 
measurements at St. James’s Park, London together with analyses made by Franzius et al. (2005) 
of non-linear anisotropic soil models.  
 

Description of the Site 
The Jubilee Line Extension of London's subway consists of the westbound and eastbound 

twin tunnel's running through the South and East London. In this paper, the well documented of 
the westbound tunnel beneath St. James’ Park is re-examined. The St. James’ Park site is a green 
field site located between Westminster and Green Park Stations. The tunnel was excavated in 
London Clay using an open-face shield machine with tunnel diameter D=4.75 m and depth 
approximately Z0=30.5 m. Further details of the site investigation and tunnelling method are 
given in Nyren (1998) and Standing and Burland (1999).  
 

3D Numerical Analysis  
The analyses presented in this paper were carried out using ABAQUS 6.10 Finite Element 

program. Reduced integration with full Newton solution technique and error-controlled sub 
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stepping stress point algorithm for solving the non-linear FE equations were adopted. The 
analyses were performed in the undrained conditions.  
 

Geometry 

Figure 1 shows the 3D FE mesh of the westbound tunnel. Only half of the problem was 
modelled since the geometry is symmetrical. The dimensions of the model were chosen to be 
identical with the model used by Franzius (2004), i.e. height 50m, length 150m and width 80m. 
To prevent the effects of far field boundary particularly on the longitudinal surface settlement, 
only 100 m out of 150 m model length is excavated (i.e. from y=0.0m to y=100.0, see Figure 1). 
The soil mesh used in the analyses consists of 21,156 8-node hexagonal elements with 31,024 
nodes. A hydrostatic pore water pressure distribution was defined based on water table 2 m below 
the ground surface. In all vertical sides of the model, normal horizontal displacement movements 
were restrained, whereas for the base of the mesh movements in all directions were restricted. 

100.0 m
80.0 m

50.0 m

 

Figure 1: 3D Finite Element model of tunnel in ABAQUS  

Simulation of Tunnel Construction 
Figure 2 shows the sequence of tunnel construction consisting of excavation (deletion of soil 

elements inside the tunnel) and lining construction (activation of shell elements around the 
tunnel). The soil element is removed in a length equal to the excavation length Lexc and is left 
unsupported to allow ground deformation. The volume of surface settlement is calculated (also 
known as volume loss). The volume loss is calculated in the plane of the tunnel by dividing the 
volume of ground loss with the tunnel volume (Figure 3). After the volume loss has reached to a 
specific value, the lining element is installed. The simulation of tunnel construction is continued 
by repeating in sequence between the soil elements removals and lining activation. A total of 40 
steps were simulated for this model. 

Example of two continuing steps where latest elements of slice 3 and 4 inside the tunnel are 
excavated is shown in Figure 2. The lining element is activated at one excavation length behind 
the tunnel face. Note that reducing the Lexc will obviously decrease the volume loss but increase 
the excavation steps.  Adopting Lexc=2.5m in this study (similar to one used by Franzius et al, 
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Pre-yield soil behaviour 
Isotropic non-linear soil model 

Using local strain measurements on triaxial samples (Burland & Symes, 1982), it was found 
that the behaviour of London Clay at small strains is highly non-linear. Figure 4 shows the non-
linearity when plotting the normalized undrained soil stiffness Eu versus axial strain εax. Because 
the undrained strength in the laboratory is depended on many factors, Jardine et al. (1986) 
preferred the normalization against mean effective stress P’. The following expression for tangent 
shear and bulk modulus are used in this numerical analysis. 
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G is secant shear modulus, K secant bulk modulus, P’ mean effective stress, Ed and εv 
deviatoric and volumetric strain variants and constant A, B, R, S, α, δ, γ, η are given in Table 1 
for London Clay. 

 
The above equations only hold for a specific range of strain values. For strains below a lower 

limit εmin and above an upper limit εmax, fixed tangent stiffness’s are assumed. In the undrained 
isotropic conditions with Poisson’s ratio of 0.49, the undrained Young’s modulus Eu=3G and 
εv=0. From Equations 1 and 2 the Young’s modulus is  
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To implement this form of non-linearity into ABAQUS software, the author has written a 

subroutine for the constitutive model. The “USDFLD” subroutine was used to include user-
defined field variables of deviator strain and mean effective stress in definition of material 
properties.  

 

Table 1: Pre-yield input parameter in London Clay (after Jardine et al. 1986) 

A 1120 B 1016 C 0.0001 α 1.335 γ 0.617 Ed(min) 8.660253*10-4 Ed(max) 0.692820 Gmin(kPa) 2333.3 R S T δ η εv(min) εv(max) Kmin(kPa) 549 506 1.03*10-3 2.069 0.420 5.03*10-3 0.15 3000 
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modelled as transversely anisotropic by Franzius et al. (2005) whereas this study adopts isotropic 
non-linear elastic and Mohr-Coulomb plastic with K0=1.5 and K0=0.  
 

Figure 8 shows two sets of transverse settlement profiles at two different construction times. 
Figure 8a presents settlement in the monitoring section when the tunnel face was exactly beneath 
the monitoring section (y=50 m) which is referred by Nyren (1998) as data Set 22. The 
monitoring sections of the model are shown in Figure 1. Figure 8b shows the surface settlement at 
monitoring section when the tunnel face passed 50 m away from the monitoring section (i.e. 
y=100 m). The field data by Nyren (1998) in Figure 8b is referred to as Set 29. As Nyren (1998) 
reported no further short-term settlement after this set, this measurement can be taken as the end 
of immediate settlement response. 
 

Figure 8a compares isotropic cases with K0=0.5 and K0=1.5 with field data. For K0=1.5, the 
surface settlement trough is shallower and too wide when compared to the field data. The 
maximum surface settlement of 5.4 mm was obtained in the isotropic soil with initial high-value 
of K0=1.5 whereas the true maximum settlement was actually 12 mm. Conversely in the case of 
K0=0.5, the present study indicated a maximum surface settlement trough similar to the field data. 
However, as any Finite Element analyses, the shape of the settlement trough can still considered 
to be wider than the field data.  
 

Similar trends are also observed in Figure 8b where the isotropic K0=1.5 showed a very 
shallow and wide trough compared to the field data with volume loss VL of only 2.1%. A high 
degree of anisotropic soil model (parameter “Set 2” in Table 2) with low K0=0.5 by Franzius et 
al., (2005) also did not match well with the observed field data. The surface settlement calculated 
from the anisotropic soil model was as much as 86 mm compared to the actual 20.5 mm, leaving 
a significant high value of volume loss VL of 18.1%. Franzius et al., (2005) illustrated little 
improvement in the transverse trough when a level of anisotropy appropriate for London clay 
(Data “set 1” in Table 2) was adopted. On the other hand, the much simpler soil model based on 
isotropic with K0=0.5 used in this study matched fairly well with the observed field measurement. 
The volume loss in this case is VL =3.8% which is near to VL=3.3% observed in the field 
measurement. 
 

It is important to note that all the 3D numerical analyses presented here were performed with 
same excavation length of Lexc. It can be seen from Figure 8 that the isotropic soil model with 
K0=0.5 gave the best results of all the three types of pre-yield soil models. The findings enable 
the authors to continue selecting this model for the subsequent analyses in investigating the 
effects of tunnel excavation underneath existing building.  
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development of “hogging” deformation at the tunnel’s tail. This may be related to the boundary 
effect of the FE model. 
 

Figure 9a illustrates that steady-state condition is not established during the 3D analyses with 
isotropic soil model when K0=1.5. Additional settlement at the front boundary (y=0 m) can still 
be seen although the tunnel face has reached the final excavation step at y=100 m. This means 
larger FE model is needed to allow longer tunnel construction and achieve the steady-state 
condition at the front boundary.   
 

Figure 9b presents the development of surface settlement in the isotropic soil with K0=0.5. In 
contrast to the previous figure, Figure 9b shows the front boundary settlement does not change 
significantly when tunnel face passed approximately y=30 m away. Figure 10 shows a much 
clearer description in defining when surface settlement has reached the steady-state condition. It 
can be seen in this figure that surface settlement increment at the front boundary is very minimal 
approximately when tunnel face has reached y= 30 m. This can be referred as the steady-state 
condition. 

 
(a) 

 
(b) 

Figure 9: Longitudinal Surface Settlement in initial (a) K0=1.5 and (b) K0=0.5 
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Figure 10: Incremental surface settlement during the progress of tunnel excavation 

measured above tunnel centreline at the front FE boundary  

CONCLUSION 
In this study, 3D numerical analyses of tunnelling in London Clay were performed using 

isotropic non-linear soil model with different K0 regime. It was shown that the coefficient of 
lateral stress K13 (=σ11/ σ33) for initial values of K0=1.5 increased to 1.8 at crown and invert of the 
tunnel and decreases to around 0.6 at springline after excavation of the tunnel. In contrast K13 for 
initial values of K0=0.5 remained constant at the springline. The final distribution of K13 ratio 
around the tunnel lining for both initial conditions however is almost similar. 
 

The study also indicated that coefficient of the earth pressure at rest, K0 significantly affects 
the surface settlement trough. The comparison of settlement profile with field measurement of 
London Clay obtained from St. James’ Park case study showed that the non-linear soil with low-
K0 regime gave better settlement profile compared to anisotropic soil model of high initial K0 
regime.  
 

The longitudinal surface settlement profile caused by the tunnelling using non-linear soil 
model with K0=0.5 was able to produce the steady-state condition. This was achieved when the 
tunnel face was seven times of tunnel diameter away from the front boundary or y=30 m. 
Decreasing the K0 value of soil enables the model to achieve the steady-state conditions at an 
earlier stage of tunnel construction. This is important if one requires analysing building 
performance to tunnel induced ground movement. 
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Appendix A: Anisotropic non-linear soil model 
 

An updated form of transverse anisotropic stiffness with non-linear stiffness behaviour of the soil is 
used by many authors to study the effects of anisotropy on the ground movement (e.g. Addenbrooke et al., 
1997; Franzius et al. 2005; Grammatikopoulou et al., 2008). The soil model is described by three 
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independent material parameters namely the vertical Young’s modulus, Ev, the Poisson’s ratio for 
horizontal strain due to horizontal strain in the orthogonal direction, υhh and an anisotropic scale parameter 
α which is defined as following: 
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where Eh is the horizontal Young’s modulus, υvh is the Poisson’s ratio for horizontal strain due to vertical 
strain, Ghh is the shear modulus in the horizontal plane and Gvh the shear modulus in the vertical plane. In 
the isotropic cases, the parameter of anisotropy is α=1. The tangent vertical Young’s modulus E’v is 
expressed as (Graham and Houlsby, 1983): 
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Two parameter sets, refers to “Set 1” and “Set 2” adopted by Franzius et al. (2005) are summarized in 

Table 2. The first set represents a degree of anisotropy that is suitable for London Clay and the second set 
incorporates an extremely high degree of anisotropy which is more academic interest and does not 
supported by any literature.  
 

Table 2: Parameters for anisotropic pre-yield model (Franzius et al., 2005) Parameter “Set 1” appropriate for London Clay obtained from field data 

Aa Ba C β γ Ed, min:% Ed, max:% Ev,min:kPa α υhh’ 

373.3 338.7 1×10-4 1.335 0.617 8.66×10-4 0.69282 5558.8 1.265 0.4 Parameter “set 2” incorporate fictive high degree of anisotropy α
308.8 280.2 1×10-4 1.335 0.617 8.66×10-4 0.69282 5558.8 2.5 0.1 
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