
MODELING DYNAMIC WEIGHT FOR 3D NAVIGATION ROUTING 
 
 

Ivin Amri Musliman 1 , Alias Abdul Rahman 1 and Volker Coors 2 
 

1 Dept. of Geoinformatics, Faculty of Geoinformation Science & Engineering, Universiti 
Teknologi Malaysia, 81310 Skudai, Johor, Malaysia. ivinamri@utm.my, alias@fksg.utm.my 

 

2  Faculty of Geomatics, Computer Science and Mathematics, Hochschule für Technik, 
Schellingstr.24, 70174 Stuttgart, Germany.  volker.coors@hft-stuttgart.de 

 
 
ABSTRACT 
 
 Currently, most of shortest path algorithm used in GIS application is often not 
sufficient for efficient management in time-critical applications such as emergency response 
applications. It doesn’t take into account dynamic emergency information changes at 
node/vertex level especially when applying in emergency situations such as large fires (in 
cities or even in buildings), flooding, chemical releases, terrorist attacks, road accidents, etc.  
 
 In this paper, an approach for finding shortest path or route in a dynamic situation for 
indoors and outdoors using Single Sink Shortest Path (SSSP) routing algorithm is proposed. 
This paper discusses the construction of 3D dynamic networks, as well as the corresponding 
algorithm that can be used for 3D navigation in a 3D GIS environment. The aspect of this 
research that distinguishes it from other work on the dynamic shortest path problem is its 
ability to handle “multiple heterogeneous modifications”: between updates, the input graph is 
allowed to be restructured by an arbitrary mixture of edge insertions, edge deletions, and 
edge-length changes.  
 
 The paper is organized in three general parts. The first part discusses the 3D 
navigation model, dynamic weight and its functional requirements. The second part presents 
the 3D dynamic network model and elaborates on the possible solution using SSSP routing 
algorithm and its implementation. Final discussion on recommendations for future research 
concludes the paper. 
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1.0     Introduction  
 

Way finding or routing has been always used by common people in navigating from 
one place (of origin) to another (destination). And most of them are in two dimensional 
routing or network. In orthogonal concept, two-dimensional (2D) or three-dimensional (3D) 
routing uses planar or non-planar graph and spatial extend, where the third dimension is used 
to calculate the weights for the edges in the graph. Usually routing is done in a planar graph 
embedded in 2D space. Sometimes it is extended to non-planar graphs to model bridges, etc. 
but still embedded in 2D space. For example, if the network model type is planar (directed) 
graph, where the node as 0D coordinate (x, y) in 2D space, therefore objects such as bridges, 
flyover, etc. cannot be modeled. While for non-planar (directed) graph, where node as 0D 
coordinate (x, y) in 2D space, objects such as bridges, flyover, etc. can be modeled but street 
length cannot be derived from the model (directly). And as for 3D space (which is the target 
of this research), objects such as bridges, flyover, etc. can be modeled in a non-planar 
(directed) graph, with node as 0D coordinate (x, y, z). Street length can only be derived from 
the model, if arcs are close to original street geometry, which is not necessary for routing. For 
routing, a node is necessary at each junction etc... A slope road with no junction still can be 
modeled with two nodes and one arc for routing purposes even if it is long and has a lot of 
serpentines as usual in the mountains but this is the geometry part of the network. 
 

Routing in 3D is almost impossible at the beginning, but with the emergence of new 
models, concepts and improved algorithms for way finding and navigation together with the 
development of communication and positioning technologies, it has made researchers expand 
the focus this research area. Modeling a route or network with dynamic behavior requires 
new data structures to represent the complexities of the networks and by applying different 
type of network algorithms (e.g. shortest path algorithm) based on real time input behaviors, 
navigating in such network is possible and enhances its potential for 3D navigation in 3D-
GIS environment. 
 

Currently, research efforts have been initiated by researchers to introduce concepts for 
routing in 3D-GIS (Ivin et. al. 2006, Zhu et. al. 2006) and even for evacuation strategies (Shi 
and Zlatanova 2005) with several types of developments and approaches. Most of the 
discussed researches were based on transportation data model (Zhu et. al. 2006, Liu et. al. 
2005, Fischer 2004) and others are focusing on disaster and emergency management (Shi and 
Zlatanova 2005, Zlatanova et. al. 2005, Zlatanova and Holweg 2004). What is missing is the 
mapping of the real world or a 3D model to the weights or costs of an edge in a network 
graph. 
 

Before continuing, let us describe some notations and define the basic shortest path 
problem. A network is a graph, G = (V, E) consisting of set of nodes (vertex) V, with the 
collection of network nodes g = |V|; g = |V1, V2, V3,...Vn| and a spanning set of directed 
edges E with h = |E|; h = |(V1, V2), (V2, V3), ..., (Vn, Vn)|. Each edge is represented as a pair 
of nodes, from node i to node j, denoted as (i, j). Each edge (i, j) has a weight, associated with 
a numerical value, Wij, which represents the distance or cost of the edge (i.e. Wij : 5). In this 
paper, we assume that two-directional travel between a pair of nodes i and j is represented by 
two different directed edges (i, j) and (j, i). Given a network G = (V, E) with known edge 
weight (distance) Wij for each edge (i, j) subset to E, the shortest path problem is to find the 
shortest distance path from a source node s to a specific node in the node set V. This is a 
simple way of finding shortest path in a network, with a static node(s). There are some cases 
where behavior (i.e. location, weight & related surrounding attributes) of one or more nodes 



are dynamically change due to unforeseen events in the future, either along or surround the 
route to the destination. 
 

In this paper, the study focuses on model construction of dynamic weight of a 
network for 3D navigation that can be used in any navigation situation, indoors and outdoors 
or both. In a dynamic navigation situation, the main question one would ask is what will 
happened to the weight of an edge; Wij, of the non-planar graph over dynamic changes e.g. 
time, current situation, etc. on the route itself?. Which model is suitable for each of the 
dynamic changes for the route?. For example, in the case of fire in a certain floor of a 
building, unknown  burned ceiling suddenly collapses and blocks existing escape path, so a 
new escape path will be selected real time due to dynamic changes on the route. This also 
applies to a case where an emergency vehicle routing is re-routed real time in a city due to 
congested network traffic flow occurred from cars accident or oil spills in peak hour and etc.. 
This paper is divided into 5 sections. Following this introduction, Section 2 reviews the 3D 
navigation model, dynamic weight and its functional requirements; Section 3 introduces the 
3D dynamic network model; Section 4 presents the possible solution for routing algorithm 
and its implementation; and finally the conclusion and recommendations for future research 
are given in Section 5. 
 
 
2.0    3D Navigation Data Model  
 

The concept of traditional navigation data model (in 2D) described as relation among 
entities related to navigation (Liu et. al 2005) which proposed methods to design and manage 
navigation database. It was commonly known and represented as node-arc model by a set of 
nodes and a set of arcs. Whereas 3D navigation data model incorporates the height values, z, 
in each of every node neither on surface nor subsurface thus allows more complicated 
representation and network analysis. Most navigation data models are developed based on 
general data models of GIS, which mainly refers to discrete entity model and network model 
(Goodchild 1998). According to the different characteristics, network model is generally 
classified as three types: planar, non-planar and 3D network model. Traditional 2D 
navigation uses routing algorithm which is characterized by the use of planar or non-planar 
network model while 3D navigation uses routing algorithm bases on 3D network model. As a 
result, 3D networks overcome the problems of 2D networks such as 3D structures e.g. 
overpasses or underpasses are better represented and the true distance is measured across 
sloping or hilly terrain. It is difficult for traditional navigation data models to handle several 
problems encountered in navigation applications, such as process of dynamic attributes 
(Goodchild 1998), complex feature representation, consistent representation of multi-scale 
topological relations, highly effective data storage and non-planar feature representation (Liu 
et. al 2005). Researchers over the world has been working on the problems faced and produce 
new data models and technologies for the navigation data model construction such as Liner 
Reference Systems (LRS), dynamic segmentation, feature-based data model, network data 
model of ArcGIS and hypergraph data model. However, none of them completely solves the 
problems of traditional navigation data models. More data models or standards that can be 
used for navigation services come forth. Here lists some of them: ISO-GDF (Geographical 
Data Files) (see GDF4.0 manual), SDAL (Shared Data Access Library) of NavTech Co. 
(NavTech), GIS-T Enterprise (Dueker and Butler 1997), and lane-based data model (Fohl et. 
al. 1996). 
 



To improve current data models and construct new data models/standards, studying 
the concept and logic model is the base. GDF, which became an ISO standard in early 2004, 
is more a common concept and logic model of road networks and road related information for 
navigation service. And its physical model can act as exchangeable format for navigation 
data. However, SDAL are more physical data models. The concept and logic data model 
study based on GDF is meaningful.  
 

Graph data structure allows an edge to connect to other edges only at its end points. 
Fohl et. al. (1996) suggested a way to adapt the lane-based network to work with the existing 
routing algorithms by representing a lane segment with a series of small edges so that lane 
changing can be made to adjacent lanes at any vertex along the series.  
 

2.1    Concept of Dynamic Weight 
 

In dynamic graph with time dependent G{V(t), E(t)} a node/vertex may be removed 
or added, depends on the dynamic changes that occurred real-time on the graph especially in 
buildings. Weight of the edges is also changes over time. For example, in an emergency 
situation, e.g. fire in a specific floor in a building, elevators will be assigned as a dynamic 
node/vertex (see Fig. 1). In case of a fire incident, it is advised to use the stairs instead of 
elevators. Considering the complexity of modern buildings and the great numbers of people 
that can be inside the buildings, it is rather difficult to organize a quick evacuation. 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 : Simplified Logical model of FKSG, 2nd floor. 
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Vehicle routing problem. In this case, destination node is fixed, whereas the start node 

would be dynamically located anywhere on the map. For example, call for a taxi; a person 
calls a taxi company and gives his/her location to the operator. Then the operator will 
searched and dispatched the nearest taxi to the given location and informed the caller the 
estimated time of arrival of the taxi. With a dynamic factor such as road traffic taking into 
account, the assigned taxi might not be able to arrive at the specific location in time. Other 
available taxi (second nearest) will then be notified, and the process goes on until a taxi 
reached the caller. Algorithm that will be used for this type of problem will have one-to-many 
type Therefore this type of case is much easier than the following problem. 
 

Rescue operation planning. Would the model be able to assign each rescuer to 
survivor(s) in a rescue operation and evacuation process with known or unknown number of 
survivor in case of a fire situation? The model of a building can either be an abstraction of a 
building is represented with polygons in 3D space (Zlatanova et. al 2004) which is likely 
geometry or topology model, or a logical model, which represents the connections between 
the rooms. The rooms and important crossings are represented with nodes; the paths are 
represented as links between nodes 
 

The requirements of real-time, more accuracy and individuation for dynamic 
navigation can be met in the situation. There are at least two elements to realize dynamic 
navigation in vehicle navigation. Firstly, is the data that reflects the real-time traffic 
information. Secondly, the effectiveness and highly precise algorithms of short time traffic 
prediction. Dynamic navigation for vehicle navigation relies on the real-time traffic data (Liu 
et. al. 2005). Zhu et al. (2006) have addressed a model for emergency routing for escape plan. 
In this model, it emphasis on multi-dimensional and dynamic routing algorithm for vehicle 
emergency. The algorithm is based on the functional requirement analysis of 3D vehicle 
emergency routing. Detailed discussion about the efficiency analysis of shortest path 
algorithms can be found in Zhan and Noon’s (1998) research.  
 

Navigating indoors and outdoors virtually need to have 'seamless' continuation 
between them. By using simulation (Jafari et. al 2003), it may improve the dynamic 
understanding of navigation . Some information will be temporarily unavailable in some 
special situation such as poor weather or technical problem, therefore the use of simulation 
information will provide continuous and dynamic support. Simulation of environment 
scenarios under different assumptions, may minimize the costs and threats with a predicted 
manner.  

 
2.2    Functional Requirements 

 
From the user’s perspective, emergency routing and navigation relate to life 

threatening and asset damaging events. In contrast to other traditional ‘shortest’ path 
applications (such as traveling salesman problems), emergency vehicle and indoor evacuation 
routing primarily calls for minimum travel time rather than minimum travel distance, or other 
considerations.  
 
 
 
 
 



 
3.0    3D Dynamic Network Model 
 

In short, the overall process of building a 3D dynamic network can be shown briefly 
in three steps. Firstly, from planar and non-planar networks to 3D networks, the ambiguous 
situation of under/overpass and network overlay in the 2D graph can be clarified. It improves 
the abilities of visualization and effective and comprehensive data integration. Secondly, by 
moving from a static network to a dynamic network, real-time information about the vehicle 
and other events can be directly integrated into the routing process. Lastly, after optimization, 
the unnecessary vertices are eliminated and the total number of vertices is greatly reduced, 
thus improve the ability of rapid response.  
 

Distances can be calculated be distance between 2 node coordinates. Elevators have to 
be models as vertex per floor with connecting edges. Stairs have to be models as edges. It can 
happen that two parallel stairs connect the same nodes. This means that E is no set any more. 
In a set, each element is unique! But in this case two nodes are connected by two 
distinguishable edges E1 = (Vi,Vj) and E2 = (Vi,Vj); this is similar to a model with lanes. 
Parallel edges are allowed. 
 
 

3.1    Anticipated Routing Algorithm Implementation 
 

As mentioned before the routing graph might change over time due to specific events. 
As we will see, the two most important changes are increasing and decreasing the costs of an 
edge and inserting a new edge into the graph. Other events can be modelled based on these 
two operations. Inserting a new edge e=(v,w) to a graph can be considered as decreasing the 
costs c(e) from ∞ to a value c. Deleting an edge e=(v,w) is similar to increase the costs of an 
edge to ∞. Deleting a vertex v can be done by deleting all edges that are incident to v. 
Inserting a vertex is trivial as long as no edge is connecting it with the rest of the graph. 
These connecting edges will be inserted using the inserting edge algorithm. Table 1 below 
described when it is required to delete, insert or modifying an edge or vertex.  

 
 

Table 1 : Description of dynamic events for routing algorithm. 
 

Task Example (Dynamic Events) 
Deleting an edge An edge might be blocked due to a disaster (ceiling collapse in 

buildings or road accidents) and can not be used any more. 

Inserting an edge In case of fire, more time is taken when rescuer uses ladder to rescue 
people from first floor, etc... 

Modifying costs of 
an edge 

More difficult to take this way out (due to smoke, etc.) or more 
easy to take this way out due to rescue team appearance. 

Delete vertex In case of fire, elevators can not be used. 
 

 
 In order to find the shortest way out of a building in case of an emergency from a 
given location or in traffic jams, the Single-Sink Shortest Path problem (SSSP) has to be 



solved for the dynamic graph G. Under the assumption that every edge e=(v,w) in the graph 
has positive costs c(e)>0, the problem can be solved by Dijkstra algorithm. If the structure of 
the graph changes due to some event, the whole algorithm has to be run again even if the 
changes do not have any effect on the result. The Dijkstra algorithm can be considered as 
batch processing on a given input graph G and sink Vertex s. If the data input is changed, the 
algorithm as to be run again. In this chapter we propose an incremental approach to deal with 
the changes of the graph structure. Changes in the graph structure are usually local changes. 
Once the SSSP problem is solved for the given input (G, v), only a small part of the solution 
has be recalculated due to the event. This incremental approach is usually much more 
efficient. For a detailed analysis of complexity of this kind of incremental algorithms can be 
found in Ramalingam and Reps’s (1996) research. 
 
 

3.2    Incremental SSSP Algorithm 
 
 The input of the SSSP problem is a graph G (V, E), a cost function c: E à R+ and a 
sink vertex v. The shortest distance dist(w) from v for every vertex w   V should be 
computed. Dijkstra algorithm will solve the problem. However, G changes over time as 
discussed before. We are interest in an incremental algorithm that handles these changes 
without solving the SSSP problem for the whole graph again.  
 
 Under the assumption that the shortest path from v to w is unique for every vertex w   
V, the resulting shortest paths build a spanning tree of G. This spanning tree ST consists of 
edge e   E that is used in at least on shortest path. Thus, e=(t,u)   ST if and only if dist(u) = 
dist(t) + c(e). In general, a shortest path might not be unique. It might be that a vertex could 
be reached on two different paths with the same costs. In this case, the resulting shortest paths 
do not build a spanning tree any more but a directed acyclic graph (DAG).  
 
 
 
 
 
 
 
 
 
 
 
 
 
SSSP sink : 0 
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Resulting shortest paths : 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 3.2.1 Deleting / increasing costs of an edge 
  
 Increasing costs c(e) of an edge e=(t,u) or deleting this edge only has an effect to the 
solution of the SSSP problem if the edge e is part of an existing shortest path, thus e   ST. In 
that case, all nodes that use the modified edge in their shortest path might be affected by this 
event. These nodes are the successors of node t in ST. Other nodes  can not be affected 
because the costs for e are increasing. To recalculate the shortest paths form the sink to the 
affected vertices we simplify the graph as follows. All vertices that are not affected by the 
event will be treated as a single vertex. Each edge e=(x, y) of the affected vertices x to one 
vertex y that is not affected will get a new weight: cs’(e)= c(e) + dist(y). The SSSP problem is 
solved again with this simplified graph. For example; 
 
Delete Edge e=( v0, v1) 
Affected vertices: v1, v4, v5. 
Not affected vertices: v0, v2, v3, v6, v7, v8. 
 
Resulting graph : 
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Simplified graph to be solved: 
 

 
 
 

3.2.2 Inserting / decreasing costs of an edge 
 
 Decreasing costs c(e) of an edge e=(t,u) or inserting a new edge. A vertex w is 
affected by this event if the new edge e enables a shorter path from v to w with distnew(w) < 
distold(w). The new edge e has to be part of this new shortest path. The length of the new 
shortest path is given by distnew (w) = dist(t) + c(e) + dist(u,w) where dist(u,w) is the length 
of the shortest path between u and w.  
 
 The algorithm works similar to Dijkstra algorithm. In a batch implementation of 
Dijkstra algorithm all adjacent vertices vi of a vertex x are adjusted if dist(x) + c(x, vi) < 
dist(vi) where dist(vi) is the shortest distance so far. In the incremental version of the 
algorithm if edge e=(t,u) is inserted into G or the costs of the (already existing) edge is 
decreased, it has to be checked if dist(t) + c(t,u) < dist(u) or dist(u) + c(t,u) < dist(t). If this is 
the case, the algorithm continues with the affected vertex similar to the batch implementation 
of Dijkstra algorithm. Otherwise, the inserted edge does not change the shortest paths. 
 
  
 3.3 Implementation of the Incremental SSSP 
 
 This section describes the implementation of the incremental SSSP algorithm using 
2D datasets (of road network). The interface was developed using new ‘classes’ within Visual 
Basic 6.0 environment. Figure 2 illustrates the shortest path from A (vertex 1) to B (vertex 
57) using standard Dijkstra algorithm. On the other hand, Figure 3 shows a new route derived 
from the implemented algorithm based on a dynamic event occurred in one of the edges 
along the original shortest path route from A to B. The dynamic event occurred at one edge 
that consists of vertex 18 as source and vertex 29 as destination. While the dotted line 
represents the original shortest path route. 
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Fig. 2 : Shortest path from location A (vertex 1) to B (vertex 57) using the 
standard Dijkstra algorithm. 
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Fig. 3 : Shortest path from location A (vertex 1) to B (vertex 57) using Incremental SSSP 
Dijkstra algorithm after assigning a dynamic event at  vertex 18 (source)  

and vertex 29 (destination). The dotted line was the original shortest  
path route from A to B before the dynamic event. 
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4.0    Conclusion and Recommendations 
 

This paper suggested a new concept of calculating shortest path routes that supports 
dynamic changes information. The initial results are shown in section 3.3. Based on the 
concepts given in this paper, implementation of the dynamic indoor evacuation and shortest 
path route calculation algorithm for vehicle will be carried out. Also, in simulating 
environment scenarios under different assumptions, further works need to be looked at and 
addressed from 2D to 3D. 
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