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We present a boundary integral equation method for the numerical conformal mapping of 
bounded multiply connected region onto a circular slit region. The method is based on some 
uniquely solvable boundary integral equations with adjoint classical, adjoint generalized, and 
modified Neumann kernels. These boundary integral equations are constructed from a boundary 
relationship satisfied by a function analytic on a multiply connected region. Some numerical exam
ples are presented to illustrate the efficiency of the presented method.

1 .  I n t r o d u c t i o n

In general, the exact conformal mapping functions are unknown except for some special 
regions. It is well known that every multiply connected regions can be mapped conformally 
onto the circle with concentric circular slits, the circular ring with concentric circular slits, the 
circular slit region, the radial slit region, and the parallel slit region as described in Nehari 
[1, page 334]. Several methods for numerical approximation for the conformal mapping 
of multiply connected regions have been proposed in [2- 16]. Recently, reformulations of 
conformal mappings from bounded and unbounded multiply connected regions onto the five
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canonical slit regions as Riemann-Hilbert problems are discussed in Nasser [12, 13, 17]. An 
integral equation with the generalized Neumann kernel is then used to solve the RH problem 
as developed in [18]. The integral equation however involves singular integral which is 
calculated by Wittich's method. Murid and Hu [11] formulated an integral equation method 
based on another form of generalized Neumann kernel for conformal mapping of bounded 
doubly connected regions onto a disk with circular slit but the kernel of the integral equation 
involved the unknown circular radii. Discretization of the integral equation yields a system 
of nonlinear equations which they solved using an optimization method. To overcome this 
nonlinear problem, Sangawi et al. [19] have developed linear integral equations for conformal 
mapping of bounded multiply connected regions onto a disk with circular slits. In this paper, 
we describe an integral equation method for computing the conformal mapping function f  
of bounded multiply connected regions onto a circular slit region. This boundary integral 
equation is constructed from a boundary relationship that relates the mapping function f  on 
a multiply connected region with f ', d'(t), and |f |, where d is the boundary correspondence 
function.

The plan of the paper is as follows. Section 2 presents some auxiliary materials. 
Derivations of two integral equations related to f '  and 0'(t) are given in Sections 3 and 4, 
respectively. Section 5 presents a method to calculate the modulus of f . In Section 6, we give 
some examples to illustrate our boundary integral equation method. Finally, Section 7 pre
sents a short conclusion.

2 .  N o t a t i o n s  a n d  A u x i l i a r y  M a t e r i a l

Let Q be a bounded multiply connected region of connectivity M  + 1. The boundary r  consists 
of M  +1 smooth Jordan curves r , j  = 0 ,1 , . . . ,  M , such that j  j  = 1 , . . . ,  M ,  lies in the interior 
of r 0, where the outer curve r 0 has counterclockwise orientation and the inner curves j

j  = 1 , . . M,  have clockwise orientation. The positive direction of the contour r  = Uj==o r  is 
usually that for which Q is on the left as one traces the boundary (see Figure 1). The curve 
r k is parametrized by 2n-periodic twice continuously differentiable complex function zk(t) 
with nonvanishing first derivative

zk (t) = — ! ± l  / 0, t e  J k = [0 ,2 n ], k = 0, 1 , . . . , M .  (2.1)
k at

The total parameter domain J  is the disjoint union of M  + 1 intervals J 0, . . . , J M. We 
define a parametrization z of the whole boundary r  on J  by

z0(t), t e  J 0 = [0 ,2 n ], 

z(t) = * .

ẑM(t), t e  J M = [0, 2 n ] .

(2.2)
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Figure 1: M apping of the bounded multiply connected region Q of connectivity M  + 1 onto a circular slit 
region.

Let H* be the space of all real Holder continuous 2n-periodic functions w(t) of the 
parameter t on J k for k = 0 , 1 , . . . ,  M ,  that is,

w(t) =

W0 (t), t e  J 0,

W\ (t), t e J 1, 

^M (t), t e J M-

Let d(t) (the boundary corresponding function) be given for t e  J  by

9o(t), t e J 0, 

d(t) = * .

^0M(t), t e  J M-

Let p  (a piecewise constant real function) be given for t e  J  by

f̂ 0, t e J0,

i ( t )  = (i0,^1 , . . . , ^ m ) =

i M , t e  JM-

(2.3)

(2.4)

(2.5)

Let A(t) be a complex continuously differentiable 2n-periodic function for all t e  J . The 
generalized Neumann kernel formed with A is defined by

c?/ 1 T ( A(t) z'(s)N(t ,s )  = — Im ( —-------— ------—
n  \A(s)  z(s) -  z(t)

(2.6)
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N (t,t) = - ( ^ I m  -  Im 4 ^ .  (2.7)
n \  2 z'(t) A(t) J

Define also the kernel M  by

M(t,s)  = 1  R e /^A j(t) z (s\  ) 
n  \ A (s )  z(s) -  z(t)

(2.8)

which has a cotangent singularity type (see [18] for more detail). The classical Neumann 
kernel is the generalized Neumann kernel formed with A(t) = 1, that is,

N  (t,s) = ^ I m f  z (^ ^  \  (2.9)v ’ n  \z(s)  -  z (t ) )  v '

The adjoint kernel N*(s,  t) of the classical Neumann kernel is given by

N *(,-s) = N( s -I ) = ( 2 M)  

The adjoint function to the function Aj  is given by

A(t) = = z'(t). (2.11) 
A(t)

The generalized Neumann kernel N( s,  t) formed with A  is given by

N(t ,s )  = 1  Im ^ z, (s\ ) 'S) . (2.12)
n  \ A (s )  z(s) -  z ( t ) J

If Aj = 1, then

N(t ,s )  = -N*(t,s ) . (2.13)
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We define the Fredholm integral operators N, IN, N* by

Nu(t) = J  N(t,s)u(s)ds , t e J, (2.14)

Nu(t) = j" N(t,s )u(s)ds , t e J, (2.15)

N*u(t) =| N(s,t)u(s)ds , t e J. (2.16)
J J

Note that N = -N *, if A  = 1.
It is known that 1 = 1 is an eigenvalue of the kernel N  with multiplicity 1 and 1 = -1  

is an eigenvalue of the kernel N  with multiplicity M  [18]. We define the piecewise constant 
functions

f 1, I e  r ir j  = 0, 1 ,2 , . . . , M .
Xj ] (S) = j  j (2.17)

0, otherwise.

Then, we have from [18]

Null(I -  N) = span{1}, Null(I -  N) = spanj X[1],X [2] , . . . , X lM̂ \ . (2.18)

Lastly, we define integral operators J and J by

1 M1M 
J x [1](s)x [1](t)u(s)ds>Ju =
JJ  2n j=1

(2.19)
1 M

Ju = JJ 2n  j=0

5

which are required for uniqueness of solution in a later section.

3 .  H o m o g e n o u s  a n d  N o n h o m o g e n o u s  B o u n d a r y  R e la t i o n s h i p

3.1. Nonhomogeneous Boundary Relationship for Conformal Mapping

Suppose that c(z), Q(z),  and H (z )  are complex-valued functions defined on r  such that 
c(z) / 0, H (z )  / 0, Q(z) = 0, and H ( z ) / (T (z )Q (z ) )  satisfies the Holder condition on r . Then, 
the interior relationship is defined as follows.

A complex-valued function P(z) is said to satisfy the interior relationship if P(z)  is 
analytic in Q and satisfies the nonhomogeneous boundary relationship

P ( z ) =  c ( z ) T ( z Q ( z )  P ( z ) +  H (z ) ,  z e  r,  
G(z)

(3.1)
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where G(z) analytic in Q, Holder continuous on r , and G(z) = 0o n  r . The boundary relation
ship (3.1) also has the following equivalent form:

n  \ “ T T t/ \ P (z) G(z)H(z)G(z) = c (z)T(z)Q(z)  v \  + v_ _ — , z e r.
\P (z)\ P (z)

(3.2)

Let the function LR(z) be defined in the region C U(<x>} \ r  by

J, c( zz) H (  w)

2ni Jr  c(w)(w -  Z)Q(w)T(w)
-dw,  Z e Q (3.3)

where Q- is the complement of Q. The following theorem gives an integral equation for 
an analytic function satisfying the interior nonhomogeneous boundary relationship (3.1) or 
(3.2). This theorem generalizes the results of Murid and Razali [9] and can be proved by 
using the approach used in proving Theorem 3.1 in [20, page 45].

Theorem 3.1. Let U and V be any complex-valued functions that are defined on r. If the function 
P(z) satisfies the interior nonhomogeneous boundary relationship (3.1) or (3.2), then

V  (z)
U(z)

T (z)Q (z) J j,P (z) + PV K ( z , w ) P  (w)\dw\ + c(z)U(z)

P(w)
JQ Res (w -  z)G(w )

conj
= - U ( z ) L R(z), z e  r ,

(3.4)

where

c(z)U(z) V(z)T(w)

c(w)(w -  z)Q(w)  
1

w z
1

2n i
-1  H (z )   ̂ ' ____

2 Q(z)T(z) 2ni Jl c (w)(w -  z)Q(w)T(w)
+ pv^t—  rO rm j r

c (z)H(w)
dw.

(3.5)

The symbol "conj" in the superscript denotes complex conjugate, while the minus sign in the 
superscript denotes limit from the exterior. The sum in (3.4) is over all those zeros a\, a2, . . . , a M  of G 
that lie inside Q.I f  G has no zeros in Q, then the term containing the residue in (3.4) will not appear.

Proof. Suppose that P(z) and G(z) are analytic functions in Q and G has a finite number of 
zeros at ai, a2, . . . , a M in Q. Then, by the calculus of residues, we have

I, P(w)1
2nz J r (w -  z)G(w)

P(w)
=aj (w -  z)G(w)  '

z £ Q (3.6)

1

X

a, eQ
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Since P and G satisfy the Holder condition on r  and G(z) = 0 on r , then P /  G also satisfies the 
Holder condition on r . Taking the limit Q- 3 Z ^  z e r  and applying Sokhotski formula [5 ], 
we get

Jr

1 Piz^ + p ^ ^
2 G(z) 2ni  ) r (w -  z)G(w)

P(z) )dw = V  Res P(w)\ Z—k w=a
a,eQ“ - (w -  z)G(w)'

z e  r. (3.7)

By taking conjugate to both sides and using (3.1), we get

1 P(z) + 1 H  (z)

2 c(z)Q(z)T(z)  2 c(z)Q(z)T (z)
PVJ - f

2ni  Jj
P(z) dw

r c(w)(w -  z)Q(w) T(w)

PV
1

i
H  (z)dw

2ni  J T c(w)(w -  z)Q(z)T(z)
wR=eas

P(w)
a (w -  z)G(w)

conj

z e  r.

(3.8)

Multiplying both sides by -c(z)  and the fact that dw = T(w)\dw\, after some arrangement, 
yield

1 P(z) + PV_ L  f c(z)P(z)
2 Q(z)T(z) 2ni Jr  c (w)(w -  z)Q(w)

\dw\ + c(z) Res
■ *  7 n =  n  -. I

P(w)

a,eQ ^ l (w -  z)G(w)

conj

(3.9)

1 H  (z)
2 Q(z)T(z)

■ PV—̂  f
2ni  Jj

c(z)H(z)
dw

r c(w)(w -  z)Q(z)T(z)

conj
z e  r.

Applying Sokhotski formulas again to the expression inside the bracket of the right-hand side 
yields

1 P(z)
Q(z)T(z)

■PVr1^ f2ni  Jj
c(z)P(z)

r c(w)(w -  z)Q(w)
\dw\ + c(z) wR=eas

P(w)
“i conj

a, (w -  z)G(w) (3.10)

= - L R(z), z e  r -

Since P(z)  is analytic in Q, then by Cauchy integral formula, we have

J - f
2ni  Jj

P (z)
r w -  z

dw = 0, z e Q . (3.11)

Taking the limit w 3 Z ^  z e r  and applying Sokhotiski formulas, we get

1 1  
-  2 P (z) + PV2 n  J,

T(w)P(z)
r w -  z

\dw\ = 0, z e r. (3.12)

Multiplying (3.12) by v(z)  and subtracting it from (3.10) multiplied by u(z)  yield (3.4). □
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3.2. Homogeneous Boundary Relationship fo r Conformal Mapping

Let w = f  (z) be the analytic function which maps Q in the z-plane onto a canonical region of 
the circular slit region in the w -plane. Let 0 and a be a fixed point in Q such that a /= 0. Then, 
the mapping function is made uniquely determined by assuming that f  (a) = 0 and f  (0) = <x 
such that the residue of the function f  at 0 is equal to 1 [1]. Hence, the function f  can be 
written in the form

f  «  = ( z  -  a ) e“” z’ (313)

where g  is analytic in Q [12, 13]. Note that the boundary value of f  can be represented in the 
form

f { z v( t ) ) =  ppeie?(t), r p : z = zp(t), 0 < t < fa, p = 0 ,1 ........M,  (3.14)

where 9p is a boundary correspondence function of r p and pp is the radius of the circular slit. 
The unit tangent to r  at z(t) is denoted by T(z(t)) = z'(t)/\z'(t)\. Thus, it can be shown that

If (z)| \dP ( t )| f ’(z) ,a 1 rN
f  (z) = i n J l T ( z ) ^ — ± f  K , , z e r.  (3.15)
J i % (t) \f(z)\'

4 .  I n t e g r a l  E q u a t i o n  M e t h o d  f o r  C o m p u t in g  F  >(Z)

Note that the value of dp(t) may be positive or negative since each circular slit f  (rp) is 
traversed twice. Thus, \dp\/d'p = ±1. Hence, the boundary relationship (3.15) can be written 
as

f  (z) = ±T(z)  f  (.Z)| f  ’((Z) , z e  r .  (4.1)
1 \f  (z ) l

To eliminate the ± sign, we square both sides of the boundary relationship (4.1) to get

f ( z ) 2 = - T ( z ) 2\f (z)|2 , z e r .  (4.2)
\f  (z ) l

Then, the function E(z)  defined by

D (z) = z2f ,(z) = z2f (z) [zg ,(z) + g (z)] -  ezg(z) (4.3)

is analytic in Q.
Combining (4.3), (4.2), and (3.13), we obtain the following boundary relationship:

ze2zh(z) = -  z \z \2 I f (z)\2T(z)2 D(z)2 z e  r  (44)
a2 (a -  z )2 f  ( z )  1 (z) \D(z)\2, z e  ( )
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Comparison of (4.4) and (3.2) leads to a choice of P(z) = D(z),  c(z) = -z\z\2\f (z)\2/ ( a  -  z )2 
Q(z) = T(z),  G(z) = ze2zh(z)/ a 2, H( z)  = 0. Setting U(z) = T(z)Q(z)  and V (z) = 1, 
Theorem 3.1 yields

T ( z ) D ( z ) + PV2 k J r

z\z\2\f (z )\2 

(a -  z)2

z \z \2|f  (z)|2(a -  w f T (z) -  T (z)
" 2,— -\ w - zw\w\ |f (w)| (a -  z) (w -  z)

T(w)D(w)|dw|

T(z) wR=eas
a2D(w)

=aj (w -  z)we2wh(w'>

conj (4.5)

z e  r.

Note that a2D(w) / (w -  z)w2 has a simple pole at w = 0. To evaluate the residue in (4.5), 
we use the fact that if L(z) = d(z) /q(z )  where d(z)  and q(z) are analytic at z0 and d(z0) /  0, 
q(z0) = 0 and q'(z0) /  0, which means z0 is a simple pole of L(z),  then

ResL(w) = d ( z 0 ) . 
w=z0 q (zq) (4.6)

Applying (4.6) to the residue in (4.5) and after several algebraic manipulations, we obtain

wR=eas*  -  7 /1  =  S7 i

a2D(w) a2

=aj (w -  z)we2wg(w') z (4 .7 )

Thus, integral equation (4.5) becomes

r a2z2l f  (z)l ____
F ( Z ) + \  N+(z,w)F(w)\dw\ = _ ' J T(z) ,  z e  r  

J r  (a -  z)
(4.8)

where

F(z)  = T (z)D(z),  

D (z) = z2 f ( z)>

1
2ni

T (z) z\z\2\f (z)\2(a -  w)l T (z) 

z w w\w\2|f (w)|2(a -  z)2(z -  w) _

z"(t)1
Im-

1
2 n \z'(t)\ z'(t) ni\z'(t)\

1 z'(t)
2ni\z'(t)\ z(t) '

z(t)  
z(t) -  a

Re z(t)
z(t)

(4.9)
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By using single valuedness of the mapping function f  leads to the following condition:

Thus, the integral equation (4.8) with the conditions (4.10) and (4.11) should give a unique 
solution provided the parameters pp, p = 0 , 1 , . . . , M  that appear in N  +(z, w) are known.

Integral equation methods for computing pp and d'p are discussed in the next two 
sections.

5 .  I n t e g r a l  E q u a t i o n  f o r  C o m p u t i n g  \f (z)\

Note that, from (3.13) and (3.14), we get the following equation:

The following theorem from [22] gives a method for calculating h(t), and hence pp =

Theorem 5.1 (see [22, Theorem 5]). The function h is given by h = (h0, h1, . . . ,  hM), where

(4.10)

By means of Cauchy's integral formula, we can get the following condition:

(4.11)

+ dp(t). (5.1)

Since g  (z) is analytic in Q, thus

-A(t)g (z(t)) = Y(t) + h(t) + iv' (5.2)

from (5.1) and (5.2), yields

A (t) = z(t), (5.3)

(5.4)

h(t) = log p(t) = (log po, log p 1 , . . . ,  log pm) ■ (5.5)

|f(zp)|.

(5.6)

and where is the unique solution of the following integral equation

(5.7)

where the kernel N* (s, t) is the adjoint kernel of the kernel N (s ,  t) which is formed with A(t) = z(t).



By obtaining h0, h1, . . . ,  hM from (5.6), in view of (5.5), we obtain

pj = eh’, j  = 0 , 1 , . . . , M .
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6 .  I n t e g r a l  E q u a t i o n  M e t h o d  f o r  C o m p u t i n g  6'p (t)

This section gives another application of Theorem 3.1 for computing f / f . Let f  be the 
mapping function as described in Section 3.2. Note that (4.2) can be written in the following 
form:

f  '(z)
f(z) 2 = -X  m )  I  z e r  (6.1)

Taking the derivative of both sides of (3.13) together with some elementary calculations 
yields

)fM + z a - z )  = z g ( z ) + g ( z )  (62)

Let E(z) = ( f  ' ( z ) / f  (z)) + (a /z (a  -  z)) = zg'(z) + g(z)  be analytic in Q. Then,

= E(z) + a , z e r.  (6.3)
f ( z )  z(z -  a)

Equations (6.1) and (6.3) together with some elementary calculations yield

E(z) = - T ( z ) 2E(z) -  , z e r.  (6.4)
z(z -  a) z(z -  a)

Comparison of (6.4) and (3.1) leads to a choice of P(z) = E(z),  c(z) = -1 , Q(z) = T(z),  
G(z) = 1, H (z )  = - (a T (z )2/ z ( z  -  a)) -  (a /z (z  -  a)). Setting U(z) = T(z)Q(z)  and V (z) = 1, 
Theorem 3.1 yields

E(z)T (z )+  PV - f2 x i J r
T(z) T(z)

w z w z
E(w)T(w)\dw\ = -T(z)LR(z),  z e  r ,  (6.5)

where

T (z)LR (z) = -
- a T  (z) aT (z)
z(z -  a) z(z -  a)

T (z)PV
1

I,

-  T(z)PV
1 C  AaT (w)2 

2ni  J r w(w -  aa)(w -  z)

2ni  j r w(w -  z) (w -  a)

dw, z e  r.

dw

(6.6)

a
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Then, it follows from [5, page 91] that

p v —J  f
2ni Jjr w(w -  z) (w -  a)

1 a 
dw = - - -

2 z(z -  a ) '
(6.7)

From (6.5),(6.6), (6.7), and (6.3), we obtain the integral equation

T(z) T(z)
z w z w

f  '(w) 
f  (w )

T (w)\dw\ = 2i Im
aT(z)

z(z -  a)
z e r.  (6.8)

In the above integral equation, let z = z(t) and w = z(s). Then, by multiplying both sides of
(6.8) by \z'(t)\ and using the fact that

j z z'(t) = i&p(t), z e  r, (6.9)

the above integral equation can also be written as

j" N(s,t)d'p(s)ds = 2Imop (t)
az'(t)

z(t)(z(t) -  a)
(6.10)

Since N( s,  t) = N*(t,  s), the integral equation can be written as an integral equation in opera
tor form

(I + N*)Op = (6.11)

where

az'(t)
z(t)(z(t) -  a)

(6.12)

However, 1 = -1  is an eigenvalue of N*  with multiplicity M , by [18, Theorem 12]. Therefore, 
the integral equation (6.11) is not uniquely solvable. To overcome this problem, note that

| op (t)dt = 0, j  = 1 ,2 , . . . , M , (6.13)

which implies

jop = 0. (6.14)

a

By adding (6.14) to (6.11), we obtain the integral equation

(I + N* + J)0p = f . (6.15)
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The integral equation (6.15) is uniquely solvable in view of the following theorem which can 
be proved by using the approach used in proving [22, Theorem 4].

Theorem 6.1.

Null(I + N* + J) = {0 }. (6.16)

Proof. Let u e  Null(I + N* + J), that is, u is a solution of the integral equation

(I + N* + J)u = 0. (6.17)

Then, it follows from the definition of the operator J, (2.18), and the Fredholm alternative 
theorem that

J = J* = J2,

Range(J) = span{ Xm , . . . , X[M]} = Null(I + N )  (6.18)

Null(J) = ^span j x [1̂ , . . - ,X M] } )  = Null(I + N )1 = Range(I + N*).

Hence, we have NJ = - J  and JN* = J*N* = (NJ)* = -J . By multiplying (6.17) by J, we obtain

Ju = 0, (I + N*)u = 0. (6.19)

Thus,

u e  Null(J) n  Null(I + N*) = Range(I + N*) n  Null(I + N*). (6.20)

Since A = 1, thus the index of the function A is given by (see [18] for the definition of the 
index)

Kj = 0, j  = 0 , 1 , . . . , m , K  = 0. (6.21)

The space S+ defined in [18, Equation (30)] is then given by S+ = span{1}. Then, it follows 
from [18, Equation (92)] that the dimension of the space S+ defined in [18, Equation (32)] is 
given by dim(S+) = M . Similarly, it follows from [18, Equation (105)] that

dim(Null(I + N*)) = dim (Null ( I -  N ) )  = M.  (6.22)

Thus, it follows from [18, Lemma 20(b)] that Null(I + N*) = S+ and the space R+ n S~ in [18, 
Lemma 20(a)] contains only the zero function, that is, R+ n S~ = {0 }. Thus, it follows from



[18, Equation (103)] (applied to the adjoint function A(t) = A(t)/z'(t)  instead of A(t))  and 
from [18, Equation (100)] that

Range (I + N*) n  Null(I + N*) = {0 }. (6.23)

Hence, it follows from (6.20) that u = 0. □

By solving the integral equation (6.15), we get 0p(t). And solving the integral equation
(5.7), we get $ [j], j  = 0 , 1 , . . . ,  M ,  which gives hj through (5.6) which in turn gives pj through
(5.8). By solving integral equation (4.8), (4.10), and (4.11) with the known values of pj , we 
get F(z).  From the definition of F(z) ,  we get

14 Abstract and Applied Analysis

Finally, from (3.14) and (6.24), the approximate boundary value of f  (z) is given by

If(z)| |°p(t)| f ’(z) 
f  (z) = ^ ± T ( z )  | V ) I J  ( ) . , z e r.  (6.25)

i \0p(t)| |f'(z)|

The approximate interior value of the function f ( z )  is calculated by the Cauchy integral 
formula

a -  z 1 awf(w)  1f  ( ) = a -  z 1 f
J (z) az 2 n iJ jaz 2ni  J r a -  w w -  z

dw, z e  r . (6.26)

For points z which are not close to the boundary, the integral in (6.26) is approximated by 
the trapezoidal rule. However, for the points z closed to the boundary r , the numerical 
integration in (6.26) is nearly singular. This difficulty is overcome by using the fact that 
(1 /2ni)  \r (1 / (w  -  z)) dw = 1 , and rewrite f  (z) as

((a -  z ) /az) (1  / 2ni) a w f  ( w ) / (a  -  w ) ) ( 1 / ( w  -  z))dw  

f  (z) = ------------------------------Jr (1 /(w  -  z))dw------------------------------' z e Q . (6'27)

This idea has the advantage that the denominator in this formula compensates for the error 
in the numerator (see [23]). The integrals in (6.27) are approximated by the trapezoidal rule.

7 .  N u m e r i c a l  E x a m p l e s

Since the function zp(t) is 2n-periodic, a reliable procedure for solving the integral equations 
(6.15), (5.7), and (4.8) with the conditions (4.10) and (4.11) numerically is by using the 
Nystrom's method with the trapezoidal rule [24]. The trapezoidal rule is the most accurate 
method for integrating periodic functions numerically [25, page 134-142]. Thus, solving the 
integral equations numerically reduces to solving linear systems of the form

A X  = B. (7.1)
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Table 1: Error norm (unit circle).

n \\v - \-

8 1.8 x 10-05 2.2 x 10-02
16 3.7 x 10-10 5 0 X 1 O o o\

32 8.8 x 10-16 10X4.3

Table 2: The numerical values of fi0 for Example 7.2.

n Ho

16 3.5383174719052
32 3.5355590602433
64 3.5355585660566

128 —

The above linear system (7.1) is uniquely solvable for sufficiently large number of collocation 
points on each boundary component, since the integral equations (6.15), (5.7), and (4.8) with 
the conditions (4.10) and (4.11) are uniquely solvable [26]. The computational details are 
similar to [6, 11- 13].

7.1. Regions o f Connectivity One

For numerical experiments, we have used some test regions of connectivity two, three, four, 
and five based on the examples given in [2, 4, 7, 12, 13, 15, 27- 29]. All the computations 
were done using MATLAB 7.8.0.347(R2009a)(double precision floating point number). The 
number of points used in the discretization of each boundary component rj  is n.

In this section, we have used three test regions of connectivity one. Only the first test 
region has known exact mapping function. The results for sup norm error between the exact 
values of f , and approximate values f n, ji\n are shown in Table 1.

Example 7.1. Consider a region Q bounded by the unit circle

r  : { z( t )=  e it} ,  a = -0 .2  + 0.2i, (7.2)

Then, the exact mapping function is given by [1, page 340]

(a -  z) 1
*  (z) = o z o -n z T ) - r = a  (73)

Figure 2 shows the region and its image based on our method. See Table 1 for results. 

Example 7.2. Consider the elliptical region bounded by the ellipse

r  : {z(t) = 4 cos t + 2isin t}, a = -0 .2  -  0.2i. (7.4)

Figure 3 shows the region and its image based on our method. See Table 2 for our computed 
value of fi0.
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Table 3: Error norm  for Example 7.3.

n 11̂ 0 -  0̂n||ro
8 1.0 X 10-02

16 7.2 x 10-05
32 1.1 x 10-08
64 4.6 x 10-15

(a) (b)

Figure 2: M apping a region Q bounded by unit circle onto a circular slit region.

Example 7.3. Consider a region Q bounded by

r  : {z (t)  = (10 + 3 cos3t)ea },  a = 0.1 -  0.6i. (7.5)

Figure 4 shows the region and its image based on our method. See Table 3 for comparison 
between our computed values of fi0 with those computed values fi0n of Nasser [12, 13].

7.2. Regions o f Connectivity Two

In this section, we have used two test regions of connectivity two whose exact mapping 
functions are unknown. The first and second test regions are circular frame, and the third 
test region is bounded by an ellipse and circle. Figures 5- 7 show the region and its image 
based on our method, and approximate values of fi0 and ji1 are shown in Tables 4- 6.

Example 7.4 (circular frame). Consider a pair of circles [28]

Fo : |z(t) = e lt} ,

(7.6)
r  : ^z(t) = -0 .6  + 0.2e~a J, t : 0 < t < 2n, a = 0.25 + 0.25i,

such that the region bounded by r 0 and r i  is the region between a unit circle and a circle 
centered at -0 .6  with radius 0.2. Then, Figure 5 shows the region and its image based on our
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Figure 3: M apping for Example 7.2. 

Table 4: Error norm  for Example 7.4.

11̂ 0 -  ^0nlL_________________ 11̂ 1 -  p 1nIL
32 3.2 X 10-03 5.8 X 10-03
64 2.4 X 10-06 5.1 X 10-06
128 1.7 X 10-12 3.5 X 10-12

256 8.8 X 10-16 2.2 X 10-15

method. See Table 4 for comparison between our computed values of p0 and p 1 with those 
computed values p 0n and p 1n of Nasser [12, 13].

Example 7.5 (ellipse with one circle). Consider a region Q bounded by an ellipse and a circle

r 0 : {z(t) = 4 cos t + i sin t},

r . i  (7.7)r 1 : { z(t) = -1 + 0.25e j ,  t : 0 < t < 2n, a = -1.4,

such that the region bounded by r 0 and r 1 is the region between an ellipse and a circle 
centered at -1  with radius 0.25. Then, Figure 6 shows the region and its image based on our 
method. See Table 5 for comparison between our computed values of p 0 and p 1 with those 
computed values p 0n and p 1n of Nasser [12, 13].

Example 7.6 (two ellipses). Consider a region Q bounded by pair of ellipses

r 0 : {z(t) = 4 cos t + i sin t},
(7.8)

r 1 : {z(t) = 1 + 0.7cos t -  0.3isin t}, t : 0 < t < 2n, a = 2.3.

Figure 7 shows the region and its image based on our method. See Table 6 for comparison 
between our computed values of p 0 and p 1 with those computed values p 0n and p 1n of Nasser 
[12, 13].
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-1.4
-1.45

-1.5
-1.55

-1.7
-1.75

-1.8
-1.85

(a) (b)

Figure 4: M apping an original region and its image.

(a) (b)

Figure 5: M apping a region Q bounded by two circles onto a circular slit region.

Figure 6: M apping a region Q bounded by an ellipse and a circle onto a circular slit region.

Table 5: Error norm  for Example 7.5.

2n 11̂ 0 -  p0n\\c 11̂ 1 -  ^1nlL
64 1.5 X 10-03 6.2 x 10-04
128 4.9 X 10-07 8.5 X 10-10
256 7.1 X 10-14 3.5 x 10-14
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-3

-3

(b)

Figure 7: M apping a region Q bounded by two ellipses onto a circular slit region.

(b)

Figure 8: M apping a region Q bounded by three ellipses onto a circular slit region.

7.3. Regions o f Connectivity Three

In this section, we have used three test regions of connectivity three. The first test region is 
bounded by three ellipses, the second test region is bounded by an ellipse and two circles, 
and the third test region is a circular region. The results for sup norm error between the our 
numerical values of ^0, ^i, ^2 and the computed values of ^0n, ^in, ^2n obtained from [12, 13] 
are shown in Tables 7- 9 .

Example 7.7 (three ellipses). Let Q be the region bounded by

r 0 : {z(t) = 10 cos t + 6i sin t}, 

r 1 : {z(t) = - 4  -  2i + 3 cos t -  2isin t}, (7.9)

r 2 : {z(t) = 4 + 2cos t -  3 isin t}, 0 < t < 2n, a = 7.

Figure 8 shows the region and its image based on our method. See Table 7 for comparison 
between our computed values of ^0, ji1, and ji2 with those computed values of Nasser [12].
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Figure 9: M apping a region Q bounded by an ellipse and two circles onto a circular slit region.

(a) (b)

Figure 10: M apping a region Q bounded by three circles onto a circular slit region.

Example 7.8 (ellipse with two circles). Let Q be the region bounded by [7, 13, 15]

r 0 : {z(t) = 4 cos t + i sin t}, 

r 1 : {z(t) = 1.2 + 0.3(cos t -  i sin t)}, 

r 2 : {z(t) = -1  + 0.6(cos t -  i sin t)}, 0 < t < 2n, a = -2 .5  -  0.1i.

(7.10)

Figure 9 shows the region and its image based on our method. See Table 8 for comparison 
between our computed values of ^0, ^i, and ji2 with those computed values of Nasser [13].

Example 7.9 (three circles). Let Q be the region bounded by

F] : {z(t) = 2ea ], 

r  : { z(t) = 1.2 + 0.3e-a },  (7.11)

r 2 : ^z(t) = -1  + 0.6e-u] ,  0 < t < 2n, a = 0.5 -  1.25i.
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Figure 11: M apping for Example 7.10.

Table 6: Error norm  for Example 7.6.

2n lip) -  ^0nlL IIH1 -  H1nlL
64 2.3 x 10-03 2.4 X 10-03
128 7.4 X 10-07 9.5 X 10-07
256 7.3 X 10-14 9.9 X 10-14

Table 7: Error norm  for Example 7.7.

3n IIH0 -  H0nlL i i h - lip  -  H2nlL
48 5.1 X 10-04 1.3 x 10-03 4.7 X 10-04

96 2.8 x 10-06 7.5 X 10-06 3.9 X 10-06

192 2.4 X 10-10 6.3 X 10-10 3.1 X 10-10

384 5.5 X 10-17 2.7 X 10-16 4.9 X 10-16

Table 8: Error norm  for Example 7.8.

3n 11̂ 0 -  ^ H l llp 1 -  p 1nllL IIH -  H2nlL
96 1.6 X 10-05 1.0 X 10-03 4.9 X 10-03

192 2.7 X 10-06 2.8 X 10-06 8.6 X 10-07

384 1.2 X 10-11 1.4 X 10-11 1.2 X 10-11

Table 9: The numerical values of Ho, p 1, and p 2 for Example 7.9.

3n HQ H1 H2
96 1.144844712112 1.333447560114 1.711779222648
192 1.144844080644 1.333446944282 1.711778670173
384 — 1.333446944281 —

Table 10: Error norm  for Example 7.10.

4n llH0 -  H0nlL l H1 H1n^L IIH2 -  H2nlL IIH3 -  H3n^L
64 6.7 X 10-05 7.2 X 10-05 9.9 X 10-05 2.2 X 10-05

128 6.4 x 10-09 5.0 X 10-08 1.8 X 10-09 4.5 X 10-08

256 6.8 X 10-13 1.0 X 10-12 9.8 X 10-13 9.7 X 10-13

512 1.3 X 10-16 1.2 X 10-15 3.0 X 10-16 4.4 X 10-16
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Table 11: The numerical values of to , t 1, t 2, and t 3 for Example 7.11.

4n_________________ to________________________t1________________________t l ________________________t3
64 2.97316998311 2.50170500411 3.45373711618 3.69125205510
128 2.96757277502 2.49923061605 3.45041067650 3.69904161729
256 2.96756361086 2.49922735100 3.45040617845 3.69905124306
512 2.96756361085 2.49922735099 3.45040617844 3.69905124308

- 4 - 3 - 2
\v' 1 ■ \ \ j

-1/5
- 2

-4

(a) (b)

Figure 12: M apping a region Q bounded by an ellipse and three circles onto a circular slit region.

Figure 10 shows the region and its image based on our method. See Table 9 for our computed 
values of to , t 1, and t 2.

7.4. Regions o f Connectivity Four and Five

In this section, we have used four test regions for multiply connected regions whose exact 
mapping functions are unknown. The results for sup norm error for first and third regions 
between the our numerical values of to , t 1, t2 , t 3, t  and the computed values of ton, t 1n, 
t 2n, t 3n, t 4n obtained from [12] are shown in Tables 10 and 12.

Example 7.10. Let Q be the region bounded by [12]

To : ^z(t) = (10 + 3 cos3t )eaJ, 

r 1 : { z(t) = -3 .5  + 6i + 0.5e-n /4  (ea + 4e- t )  } ,
(7.12)

Lz : { z(t) = 5 + 0.5en /4 ( eit + 4e~a)  } ,  

rs : ^z(t) = -3 .5  -  6i + 0.5ein/4 (ea + 4e~a)  } ,  0 < t < 2n, a = 8.5 + 0.1i.

Figure 11 shows the region and its image based on our method. See Table 10 for comparison 
between our computed values of to , t 1, t2 , and t 3 with those computed values of Nasser 
[12].

0
1
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Figure 13: M apping a region Q bounded by an ellipse and four circles onto a circular slit region.

Table 12: Error norm  for Example 7.12.

5n Ilt0 -  t0n 11/1 ~ t1n 11/2 -  t2n 11/3 -  t3n
80
160
320
400

4.2
1.1
1.6
9.9

10-05
10-07
10-13

10-16

4.5
3.2
5.7

10-05
10-08
10-14

0

4.5
3.2
5.7
9.9

10-05
10-08
10-14
10-16

4.4
6.6
1.2

10-05
10-08
10-13

0

4.3 x 10-05 
6.6 x 10-08 
1.2 x 10-13 

0

Example 7.11 (ellipse with three circles). Let Q be the region bounded by

To : {z(t) = 2 cost + 1.5isint}, 

r 1 : {z(t) = 1 + 0.25(cos t -  i sin t)},
(7.13)

r 2 : {z(t) = -1  + 0.25(cos t -  i sin t)}, 

r 3 : {z(t) = 0.75i + 0.25(cos t -  i sin t)}, 0 < t < 2n, a = 0.25 -  0.25i.

Figure 12 shows the region and its image based on our method. See Table 11 for our computed 
values of to , / 1, t2 , and / 3.

Example 7.12 (ellipse with four circles). Let Q be the region bounded by

r 0 : {z(t) = 0.2 + 8 cost + 6isin t}, 

r 1 : {z(t) = 3 + 2i + cos t -  i sin t},

r 2 : {z(t) = - 3  + 2i + cos t -  i sin t}, (7.14)

r 3 : {z(t) = - 3  -  2i + cos t -  i sin t}, 

r 4 : {z(t) = 3 -  2i + cos t -  i sin t}, 0 < t < 2n, a = 4i.
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Figure 14: M apping a region Q bounded by five ellipses onto a circular slit region.

Table 13: The numerical values of / 0, / i ,  / 2, / 3, and / 4 for Example 7.13.

5n to t 1 t2 t 3 t 4
160 0.4081769461 0.5470254751 0.5470254751 0.6850879289 0.5258641902
320 0.4081097591 0.5470505181 0.5470505181 0.6850466360 0.5258066821
400 0.4081097885 0.5470505071 0.5470505071 0.6850466537 0.5258067072

Figure 13 shows the region and its image based on our method. See Table 12 for comparison 
between our computed values of /o , / 1, / 2, / 3, and / 4 with those computed values of Nasser 
[12].

Example 7.13 (five ellipses). Let Q be the region bounded by

r 0 : {z(t) = -1 .5i + 6 cos t + 8i sin t}, 

r 1 : {z(t) = 3 + 0.5i + 1.5 cos t -  i sin t},

r 2 : {z(t) = - 3  + 0.5i + 1.5 cos t -  i sin t}, (7.15)

r 3 : {z(t) = -3 i  + 0.7cos t -  1.7isin t}, 

r 4 : {z(t) = -6 i  + 1 .7cos t -  0.7isin t}, 0 < t < 2n, a = 0.4i.

Figure 14 shows the region and its image based on our method. See Table 13 for our computed 
values of /o , / 1, / 2, / 3, and / 4.

8 .  C o n c lu s io n

In this paper, we have constructed new boundary integral equations for conformal mapping 
of multiply regions onto a circular slit region. We have also constructed a new method to find 
the values of modulus of f  (z). The advantage of our method is that our boundary integral 
equations are all linear. Several mappings of the test regions of connectivity one, two, three, 
four, and five were computed numerically using the proposed method. After the boundary 
values of the mapping function are computed, the interior mapping function is calculated by
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the means of Cauchy integral formula. The numerical examples presented have illustrated 
that our boundary integral equation method has high accuracy.
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